1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
// Copyright (c) 2019 Raphaël Gomès <rgomes@octobus.net>,
// Yuya Nishihara <yuya@tcha.org>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Utility to share Rust reference across Python objects.
use std::cell::{BorrowError, BorrowMutError, Ref, RefCell, RefMut};
use std::ops::{Deref, DerefMut};
use std::result;
use std::sync::atomic::{AtomicUsize, Ordering};
use crate::err::{PyErr, PyResult};
use crate::objects::{exc, PyObject};
use crate::python::{PyClone, Python};
/// A mutable memory location shareable immutably across Python objects.
///
/// This is a [RefCell] that can also be borrowed immutably by another Python
/// object.
///
/// The primary use case is to implement a Python iterator over a Rust
/// iterator. Since a Python object cannot hold a lifetime-bound object,
/// `Iter<'a, T>` cannot be a data field of the Python iterator object.
/// [PySharedRef::leak_immutable()] provides a way around this issue.
///
/// ```
/// # use cpython::*;
/// # use std::cell::RefCell;
/// # use std::slice::Iter;
/// py_class!(pub class List |py| {
/// @shared data rust_vec: Vec<i32>;
///
/// def __iter__(&self) -> PyResult<ListIterator> {
/// let leaked = self.rust_vec(py).leak_immutable();
/// ListIterator::create_instance(
/// py,
/// RefCell::new(unsafe { leaked.map(py, |o| o.iter()) }),
/// )
/// }
/// });
///
/// py_class!(pub class ListIterator |py| {
/// data rust_iter: RefCell<UnsafePyLeaked<Iter<'static, i32>>>;
///
/// def __next__(&self) -> PyResult<Option<PyInt>> {
/// let mut leaked = self.rust_iter(py).borrow_mut();
/// let mut iter = unsafe { leaked.try_borrow_mut(py)? };
/// Ok(iter.next().map(|v| v.to_py_object(py)))
/// }
///
/// def __iter__(&self) -> PyResult<Self> {
/// Ok(self.clone_ref(py))
/// }
/// });
/// ```
///
/// The borrow rules are enforced dynamically in a similar manner to the
/// Python iterator.
///
/// `PySharedRefCell` is merely a data struct to be stored in a Python object.
/// Any further operation will be performed through [PySharedRef], which is
/// a lifetime-bound reference to the `PySharedRefCell`.
///
/// [RefCell]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
/// [PySharedRef]: struct.PySharedRef.html
/// [PySharedRef::leak_immutable()]: struct.PySharedRef.html#method.leak_immutable
#[derive(Debug)]
pub struct PySharedRefCell<T: ?Sized> {
state: PySharedState,
data: RefCell<T>,
}
impl<T> PySharedRefCell<T> {
/// Creates a new `PySharedRefCell` containing `value`.
// can be "const fn" since Rust 1.31.0
pub fn new(value: T) -> PySharedRefCell<T> {
Self {
state: PySharedState::new(),
data: RefCell::new(value),
}
}
}
/// A reference to `PySharedRefCell` owned by a Python object.
///
/// This is a lifetime-bound reference to the [PySharedRefCell] data field,
/// and will be created by the automatically generated accessor function.
///
/// ```ignore
/// impl MyType {
/// fn data_name<'a>(&'a self, py: Python<'a>) -> PySharedRef<'a, T> { ... }
/// }
/// ```
///
/// [PySharedRefCell]: struct.PySharedRefCell.html
pub struct PySharedRef<'a, T: 'a + ?Sized> {
py: Python<'a>,
owner: &'a PyObject,
state: &'a PySharedState,
data: &'a RefCell<T>,
}
impl<'a, T: ?Sized> PySharedRef<'a, T> {
/// Creates a reference to the given `PySharedRefCell` owned by the
/// given `PyObject`.
///
/// # Safety
///
/// The `data` must be owned by the `owner`. Otherwise, `leak_immutable()`
/// would create an invalid reference.
#[doc(hidden)]
pub unsafe fn new(py: Python<'a>, owner: &'a PyObject, data: &'a PySharedRefCell<T>) -> Self {
Self {
py,
owner,
state: &data.state,
data: &data.data,
}
}
/// Immutably borrows the wrapped value.
///
/// # Panics
///
/// Panics if the value is currently mutably borrowed.
pub fn borrow(&self) -> Ref<'a, T> {
self.try_borrow().expect("already mutably borrowed")
}
/// Immutably borrows the wrapped value, returning an error if the value
/// is currently mutably borrowed.
pub fn try_borrow(&self) -> result::Result<Ref<'a, T>, BorrowError> {
// state isn't involved since
// - data.try_borrow() would fail if self is mutably borrowed,
// - and data.try_borrow_mut() would fail while self is borrowed.
self.data.try_borrow()
}
/// Mutably borrows the wrapped value.
///
/// Any existing leaked references will be invalidated.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
pub fn borrow_mut(&self) -> RefMut<'a, T> {
self.try_borrow_mut().expect("already borrowed")
}
/// Mutably borrows the wrapped value, returning an error if the value
/// is currently borrowed.
pub fn try_borrow_mut(&self) -> result::Result<RefMut<'a, T>, BorrowMutError> {
// the value may be immutably borrowed through UnsafePyLeaked
if self.state.current_borrow_count(self.py) > 0 {
// propagate borrow-by-leaked state to data to get BorrowMutError
let _dummy = self.data.borrow();
self.data.try_borrow_mut()?;
unreachable!("BorrowMutError must be returned");
}
let data_ref = self.data.try_borrow_mut()?;
self.state.increment_generation(self.py);
Ok(data_ref)
}
/// Creates an immutable reference which is not bound to lifetime.
///
/// # Panics
///
/// Panics if the value is currently mutably borrowed.
pub fn leak_immutable(&self) -> UnsafePyLeaked<&'static T> {
self.try_leak_immutable().expect("already mutably borrowed")
}
/// Creates an immutable reference which is not bound to lifetime,
/// returning an error if the value is currently mutably borrowed.
pub fn try_leak_immutable(&self) -> result::Result<UnsafePyLeaked<&'static T>, BorrowError> {
// make sure self.data isn't mutably borrowed; otherwise the
// generation number wouldn't be trusted.
let data_ref = self.try_borrow()?;
// keep reference to the owner so the data and state are alive,
// but the data pointer can be invalidated by borrow_mut().
// the state wouldn't since it is immutable.
let state_ptr: *const PySharedState = self.state;
let data_ptr: *const T = &*data_ref;
Ok(UnsafePyLeaked::<&'static T> {
owner: self.owner.clone_ref(self.py),
state: unsafe { &*state_ptr },
generation: self.state.current_generation(self.py),
data: unsafe { &*data_ptr },
})
}
}
/// The shared state between Python and Rust
///
/// `PySharedState` is owned by `PySharedRefCell`, and is shared across its
/// derived references. The consistency of these references are guaranteed
/// as follows:
///
/// - The immutability of `py_class!` object fields. Any mutation of
/// `PySharedRefCell` is allowed only through its `borrow_mut()`.
/// - The `py: Python<'_>` token, which makes sure that any data access is
/// synchronized by the GIL.
/// - The underlying `RefCell`, which prevents `PySharedRefCell` value from
/// being directly borrowed or leaked while it is mutably borrowed.
/// - The `borrow_count`, which is the number of references borrowed from
/// `UnsafePyLeaked`. Just like `RefCell`, mutation is prohibited while
/// `UnsafePyLeaked` is borrowed.
/// - The `generation` counter, which increments on `borrow_mut()`.
/// `UnsafePyLeaked` reference is valid only if the `current_generation()`
/// equals to the `generation` at the time of `leak_immutable()`.
#[derive(Debug)]
struct PySharedState {
// The counter variable could be Cell<usize> since any operation on
// PySharedState is synchronized by the GIL, but being "atomic" makes
// PySharedState inherently Sync. The ordering requirement doesn't
// matter thanks to the GIL. That's why Ordering::Relaxed is used
// everywhere.
/// The number of immutable references borrowed through leaked reference.
borrow_count: AtomicUsize,
/// The mutation counter of the underlying value.
generation: AtomicUsize,
}
impl PySharedState {
// can be "const fn" since Rust 1.31.0
fn new() -> PySharedState {
PySharedState {
borrow_count: AtomicUsize::new(0),
generation: AtomicUsize::new(0),
}
}
fn current_borrow_count(&self, _py: Python) -> usize {
self.borrow_count.load(Ordering::Relaxed)
}
fn increase_borrow_count(&self, _py: Python) {
// this wraps around if there are more than usize::MAX borrowed
// references, which shouldn't happen due to memory limit.
self.borrow_count.fetch_add(1, Ordering::Relaxed);
}
fn decrease_borrow_count(&self, _py: Python) {
let prev_count = self.borrow_count.fetch_sub(1, Ordering::Relaxed);
assert!(prev_count > 0);
}
fn current_generation(&self, _py: Python) -> usize {
self.generation.load(Ordering::Relaxed)
}
fn increment_generation(&self, py: Python) {
assert_eq!(self.current_borrow_count(py), 0);
// this wraps around to the same value if mutably borrowed
// usize::MAX times, which wouldn't happen in practice.
self.generation.fetch_add(1, Ordering::Relaxed);
}
}
/// Helper to keep the borrow count updated while the shared object is
/// immutably borrowed without using the `RefCell` interface.
struct BorrowPyShared<'a> {
py: Python<'a>,
state: &'a PySharedState,
}
impl<'a> BorrowPyShared<'a> {
fn new(py: Python<'a>, state: &'a PySharedState) -> BorrowPyShared<'a> {
state.increase_borrow_count(py);
BorrowPyShared { py, state }
}
}
impl<'a> Drop for BorrowPyShared<'a> {
fn drop(&mut self) {
self.state.decrease_borrow_count(self.py);
}
}
/// An immutable reference to `PySharedRefCell` value, not bound to lifetime.
///
/// The reference will be invalidated once the original value is mutably
/// borrowed.
///
/// # Safety
///
/// Even though `UnsafePyLeaked` tries to enforce the real lifetime of the
/// underlying object, the object having the artificial `'static` lifetime
/// may be exposed to your Rust code. You must be careful to not make a bare
/// reference outlive the actual object lifetime.
///
/// ```ignore
/// let outer;
/// unsafe { leaked.map(py, |o| { outer = o }) }; // Bad
/// ```
///
/// ```ignore
/// let outer;
/// let mut leaked_iter = leaked.map(py, |o| o.iter());
/// {
/// let mut iter = unsafe { leaked_iter.try_borrow_mut(py) };
/// let inner = iter.next(); // Good, in borrow scope
/// outer = inner; // Bad, &'static T may outlive
/// }
/// ```
pub struct UnsafePyLeaked<T: ?Sized> {
owner: PyObject,
state: &'static PySharedState,
/// Generation counter of data `T` captured when UnsafePyLeaked is created.
generation: usize,
/// Underlying data of artificial lifetime, which is valid only when
/// state.generation == self.generation.
data: T,
}
// DO NOT implement Deref for UnsafePyLeaked<T>! Dereferencing UnsafePyLeaked
// without taking Python GIL wouldn't be safe. Also, the underling reference
// is invalid if generation != state.generation.
impl<T: ?Sized> UnsafePyLeaked<T> {
// No panicking version of borrow() and borrow_mut() are implemented
// because the underlying value is supposed to be mutated in Python
// world, and the Rust library designer can't prevent it.
// try_borrow() and try_borrow_mut() are unsafe because self.data may
// have a function returning the inner &'static reference.
// If T is &'static U, its lifetime can be easily coerced to &'a U, but
// how could we do that for Whatever<'static> in general?
/// Immutably borrows the wrapped value.
///
/// Borrowing fails if the underlying reference has been invalidated.
///
/// # Safety
///
/// The lifetime of the innermost object is artificial. Do not obtain and
/// copy it out of the borrow scope.
pub unsafe fn try_borrow<'a>(&'a self, py: Python<'a>) -> PyResult<PyLeakedRef<'a, T>> {
self.validate_generation(py)?;
Ok(PyLeakedRef {
_borrow: BorrowPyShared::new(py, self.state),
data: &self.data,
})
}
/// Mutably borrows the wrapped value.
///
/// Borrowing fails if the underlying reference has been invalidated.
///
/// Typically `T` is an iterator. If `T` is an immutable reference,
/// `get_mut()` is useless since the inner value can't be mutated.
///
/// # Safety
///
/// The lifetime of the innermost object is artificial. Do not obtain and
/// copy it out of the borrow scope.
pub unsafe fn try_borrow_mut<'a>(
&'a mut self,
py: Python<'a>,
) -> PyResult<PyLeakedRefMut<'a, T>> {
self.validate_generation(py)?;
Ok(PyLeakedRefMut {
_borrow: BorrowPyShared::new(py, self.state),
data: &mut self.data,
})
}
fn validate_generation(&self, py: Python) -> PyResult<()> {
if self.state.current_generation(py) == self.generation {
Ok(())
} else {
Err(PyErr::new::<exc::RuntimeError, _>(
py,
"Cannot access to leaked reference after mutation",
))
}
}
}
impl<T> UnsafePyLeaked<T> {
/// Converts the inner value by the given function.
///
/// Typically `T` is a static reference to a collection, and `U` is an
/// iterator of that collection.
///
/// # Panics
///
/// Panics if the underlying reference has been invalidated.
///
/// This is typically called immediately after the `UnsafePyLeaked` is
/// obtained. At this time, the reference must be valid and no panic
/// would occur.
///
/// # Safety
///
/// The lifetime of the object passed in to the function `f` is artificial.
/// It's typically a static reference, but is valid only while the
/// corresponding `UnsafePyLeaked` is alive. Do not copy it out of the
/// function call.
pub unsafe fn map<U>(self, py: Python, f: impl FnOnce(T) -> U) -> UnsafePyLeaked<U> {
// Needs to test the generation value to make sure self.data reference
// is still intact.
self.validate_generation(py)
.expect("map() over invalidated leaked reference");
// f() could make the self.data outlive. That's why map() is unsafe.
// In order to make this function safe, maybe we'll need a way to
// temporarily restrict the lifetime of self.data and translate the
// returned object back to Something<'static>.
let new_data = f(self.data);
UnsafePyLeaked {
owner: self.owner,
state: self.state,
generation: self.generation,
data: new_data,
}
}
}
/// An immutably borrowed reference to a leaked value.
pub struct PyLeakedRef<'a, T: 'a + ?Sized> {
_borrow: BorrowPyShared<'a>,
data: &'a T,
}
impl<'a, T: ?Sized> Deref for PyLeakedRef<'a, T> {
type Target = T;
fn deref(&self) -> &T {
self.data
}
}
/// A mutably borrowed reference to a leaked value.
pub struct PyLeakedRefMut<'a, T: 'a + ?Sized> {
_borrow: BorrowPyShared<'a>,
data: &'a mut T,
}
impl<'a, T: ?Sized> Deref for PyLeakedRefMut<'a, T> {
type Target = T;
fn deref(&self) -> &T {
self.data
}
}
impl<'a, T: ?Sized> DerefMut for PyLeakedRefMut<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.data
}
}