1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Copyright (c) 2019 Raphaël Gomès <rgomes@octobus.net>,
//                    Yuya Nishihara <yuya@tcha.org>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Utility to share Rust reference across Python objects.

use std::cell::{BorrowError, BorrowMutError, Ref, RefCell, RefMut};
use std::ops::{Deref, DerefMut};
use std::result;
use std::sync::atomic::{AtomicUsize, Ordering};

use crate::err::{PyErr, PyResult};
use crate::objects::{exc, PyObject};
use crate::python::{PyClone, Python};

/// A mutable memory location shareable immutably across Python objects.
///
/// This is a [RefCell] that can also be borrowed immutably by another Python
/// object.
///
/// The primary use case is to implement a Python iterator over a Rust
/// iterator. Since a Python object cannot hold a lifetime-bound object,
/// `Iter<'a, T>` cannot be a data field of the Python iterator object.
/// [PySharedRef::leak_immutable()] provides a way around this issue.
///
/// ```
/// # use cpython::*;
/// # use std::cell::RefCell;
/// # use std::slice::Iter;
/// py_class!(pub class List |py| {
///     @shared data rust_vec: Vec<i32>;
///
///     def __iter__(&self) -> PyResult<ListIterator> {
///         let leaked = self.rust_vec(py).leak_immutable();
///         ListIterator::create_instance(
///             py,
///             RefCell::new(unsafe { leaked.map(py, |o| o.iter()) }),
///         )
///     }
/// });
///
/// py_class!(pub class ListIterator |py| {
///     data rust_iter: RefCell<UnsafePyLeaked<Iter<'static, i32>>>;
///
///     def __next__(&self) -> PyResult<Option<PyInt>> {
///         let mut leaked = self.rust_iter(py).borrow_mut();
///         let mut iter = unsafe { leaked.try_borrow_mut(py)? };
///         Ok(iter.next().map(|v| v.to_py_object(py)))
///     }
///
///     def __iter__(&self) -> PyResult<Self> {
///         Ok(self.clone_ref(py))
///     }
/// });
/// ```
///
/// The borrow rules are enforced dynamically in a similar manner to the
/// Python iterator.
///
/// `PySharedRefCell` is merely a data struct to be stored in a Python object.
/// Any further operation will be performed through [PySharedRef], which is
/// a lifetime-bound reference to the `PySharedRefCell`.
///
/// [RefCell]: https://doc.rust-lang.org/std/cell/struct.RefCell.html
/// [PySharedRef]: struct.PySharedRef.html
/// [PySharedRef::leak_immutable()]: struct.PySharedRef.html#method.leak_immutable
#[derive(Debug)]
pub struct PySharedRefCell<T: ?Sized> {
    state: PySharedState,
    data: RefCell<T>,
}

impl<T> PySharedRefCell<T> {
    /// Creates a new `PySharedRefCell` containing `value`.
    // can be "const fn" since Rust 1.31.0
    pub fn new(value: T) -> PySharedRefCell<T> {
        Self {
            state: PySharedState::new(),
            data: RefCell::new(value),
        }
    }
}

/// A reference to `PySharedRefCell` owned by a Python object.
///
/// This is a lifetime-bound reference to the [PySharedRefCell] data field,
/// and will be created by the automatically generated accessor function.
///
/// ```ignore
/// impl MyType {
///     fn data_name<'a>(&'a self, py: Python<'a>) -> PySharedRef<'a, T> { ... }
/// }
/// ```
///
/// [PySharedRefCell]: struct.PySharedRefCell.html
pub struct PySharedRef<'a, T: 'a + ?Sized> {
    py: Python<'a>,
    owner: &'a PyObject,
    state: &'a PySharedState,
    data: &'a RefCell<T>,
}

impl<'a, T: ?Sized> PySharedRef<'a, T> {
    /// Creates a reference to the given `PySharedRefCell` owned by the
    /// given `PyObject`.
    ///
    /// # Safety
    ///
    /// The `data` must be owned by the `owner`. Otherwise, `leak_immutable()`
    /// would create an invalid reference.
    #[doc(hidden)]
    pub unsafe fn new(py: Python<'a>, owner: &'a PyObject, data: &'a PySharedRefCell<T>) -> Self {
        Self {
            py,
            owner,
            state: &data.state,
            data: &data.data,
        }
    }

    /// Immutably borrows the wrapped value.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently mutably borrowed.
    pub fn borrow(&self) -> Ref<'a, T> {
        self.try_borrow().expect("already mutably borrowed")
    }

    /// Immutably borrows the wrapped value, returning an error if the value
    /// is currently mutably borrowed.
    pub fn try_borrow(&self) -> result::Result<Ref<'a, T>, BorrowError> {
        // state isn't involved since
        // - data.try_borrow() would fail if self is mutably borrowed,
        // - and data.try_borrow_mut() would fail while self is borrowed.
        self.data.try_borrow()
    }

    /// Mutably borrows the wrapped value.
    ///
    /// Any existing leaked references will be invalidated.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently borrowed.
    pub fn borrow_mut(&self) -> RefMut<'a, T> {
        self.try_borrow_mut().expect("already borrowed")
    }

    /// Mutably borrows the wrapped value, returning an error if the value
    /// is currently borrowed.
    pub fn try_borrow_mut(&self) -> result::Result<RefMut<'a, T>, BorrowMutError> {
        // the value may be immutably borrowed through UnsafePyLeaked
        if self.state.current_borrow_count(self.py) > 0 {
            // propagate borrow-by-leaked state to data to get BorrowMutError
            let _dummy = self.data.borrow();
            self.data.try_borrow_mut()?;
            unreachable!("BorrowMutError must be returned");
        }

        let data_ref = self.data.try_borrow_mut()?;
        self.state.increment_generation(self.py);
        Ok(data_ref)
    }

    /// Creates an immutable reference which is not bound to lifetime.
    ///
    /// # Panics
    ///
    /// Panics if the value is currently mutably borrowed.
    pub fn leak_immutable(&self) -> UnsafePyLeaked<&'static T> {
        self.try_leak_immutable().expect("already mutably borrowed")
    }

    /// Creates an immutable reference which is not bound to lifetime,
    /// returning an error if the value is currently mutably borrowed.
    pub fn try_leak_immutable(&self) -> result::Result<UnsafePyLeaked<&'static T>, BorrowError> {
        // make sure self.data isn't mutably borrowed; otherwise the
        // generation number wouldn't be trusted.
        let data_ref = self.try_borrow()?;

        // keep reference to the owner so the data and state are alive,
        // but the data pointer can be invalidated by borrow_mut().
        // the state wouldn't since it is immutable.
        let state_ptr: *const PySharedState = self.state;
        let data_ptr: *const T = &*data_ref;
        Ok(UnsafePyLeaked::<&'static T> {
            owner: self.owner.clone_ref(self.py),
            state: unsafe { &*state_ptr },
            generation: self.state.current_generation(self.py),
            data: unsafe { &*data_ptr },
        })
    }
}

/// The shared state between Python and Rust
///
/// `PySharedState` is owned by `PySharedRefCell`, and is shared across its
/// derived references. The consistency of these references are guaranteed
/// as follows:
///
/// - The immutability of `py_class!` object fields. Any mutation of
///   `PySharedRefCell` is allowed only through its `borrow_mut()`.
/// - The `py: Python<'_>` token, which makes sure that any data access is
///   synchronized by the GIL.
/// - The underlying `RefCell`, which prevents `PySharedRefCell` value from
///   being directly borrowed or leaked while it is mutably borrowed.
/// - The `borrow_count`, which is the number of references borrowed from
///   `UnsafePyLeaked`. Just like `RefCell`, mutation is prohibited while
///   `UnsafePyLeaked` is borrowed.
/// - The `generation` counter, which increments on `borrow_mut()`.
///   `UnsafePyLeaked` reference is valid only if the `current_generation()`
///   equals to the `generation` at the time of `leak_immutable()`.
#[derive(Debug)]
struct PySharedState {
    // The counter variable could be Cell<usize> since any operation on
    // PySharedState is synchronized by the GIL, but being "atomic" makes
    // PySharedState inherently Sync. The ordering requirement doesn't
    // matter thanks to the GIL. That's why Ordering::Relaxed is used
    // everywhere.
    /// The number of immutable references borrowed through leaked reference.
    borrow_count: AtomicUsize,
    /// The mutation counter of the underlying value.
    generation: AtomicUsize,
}

impl PySharedState {
    // can be "const fn" since Rust 1.31.0
    fn new() -> PySharedState {
        PySharedState {
            borrow_count: AtomicUsize::new(0),
            generation: AtomicUsize::new(0),
        }
    }

    fn current_borrow_count(&self, _py: Python) -> usize {
        self.borrow_count.load(Ordering::Relaxed)
    }

    fn increase_borrow_count(&self, _py: Python) {
        // this wraps around if there are more than usize::MAX borrowed
        // references, which shouldn't happen due to memory limit.
        self.borrow_count.fetch_add(1, Ordering::Relaxed);
    }

    fn decrease_borrow_count(&self, _py: Python) {
        let prev_count = self.borrow_count.fetch_sub(1, Ordering::Relaxed);
        assert!(prev_count > 0);
    }

    fn current_generation(&self, _py: Python) -> usize {
        self.generation.load(Ordering::Relaxed)
    }

    fn increment_generation(&self, py: Python) {
        assert_eq!(self.current_borrow_count(py), 0);
        // this wraps around to the same value if mutably borrowed
        // usize::MAX times, which wouldn't happen in practice.
        self.generation.fetch_add(1, Ordering::Relaxed);
    }
}

/// Helper to keep the borrow count updated while the shared object is
/// immutably borrowed without using the `RefCell` interface.
struct BorrowPyShared<'a> {
    py: Python<'a>,
    state: &'a PySharedState,
}

impl<'a> BorrowPyShared<'a> {
    fn new(py: Python<'a>, state: &'a PySharedState) -> BorrowPyShared<'a> {
        state.increase_borrow_count(py);
        BorrowPyShared { py, state }
    }
}

impl<'a> Drop for BorrowPyShared<'a> {
    fn drop(&mut self) {
        self.state.decrease_borrow_count(self.py);
    }
}

/// An immutable reference to `PySharedRefCell` value, not bound to lifetime.
///
/// The reference will be invalidated once the original value is mutably
/// borrowed.
///
/// # Safety
///
/// Even though `UnsafePyLeaked` tries to enforce the real lifetime of the
/// underlying object, the object having the artificial `'static` lifetime
/// may be exposed to your Rust code. You must be careful to not make a bare
/// reference outlive the actual object lifetime.
///
/// ```ignore
/// let outer;
/// unsafe { leaked.map(py, |o| { outer = o }) };  // Bad
/// ```
///
/// ```ignore
/// let outer;
/// let mut leaked_iter = leaked.map(py, |o| o.iter());
/// {
///     let mut iter = unsafe { leaked_iter.try_borrow_mut(py) };
///     let inner = iter.next();  // Good, in borrow scope
///     outer = inner;            // Bad, &'static T may outlive
/// }
/// ```
pub struct UnsafePyLeaked<T: ?Sized> {
    owner: PyObject,
    state: &'static PySharedState,
    /// Generation counter of data `T` captured when UnsafePyLeaked is created.
    generation: usize,
    /// Underlying data of artificial lifetime, which is valid only when
    /// state.generation == self.generation.
    data: T,
}

// DO NOT implement Deref for UnsafePyLeaked<T>! Dereferencing UnsafePyLeaked
// without taking Python GIL wouldn't be safe. Also, the underling reference
// is invalid if generation != state.generation.

impl<T: ?Sized> UnsafePyLeaked<T> {
    // No panicking version of borrow() and borrow_mut() are implemented
    // because the underlying value is supposed to be mutated in Python
    // world, and the Rust library designer can't prevent it.

    // try_borrow() and try_borrow_mut() are unsafe because self.data may
    // have a function returning the inner &'static reference.
    // If T is &'static U, its lifetime can be easily coerced to &'a U, but
    // how could we do that for Whatever<'static> in general?

    /// Immutably borrows the wrapped value.
    ///
    /// Borrowing fails if the underlying reference has been invalidated.
    ///
    /// # Safety
    ///
    /// The lifetime of the innermost object is artificial. Do not obtain and
    /// copy it out of the borrow scope.
    pub unsafe fn try_borrow<'a>(&'a self, py: Python<'a>) -> PyResult<PyLeakedRef<'a, T>> {
        self.validate_generation(py)?;
        Ok(PyLeakedRef {
            _borrow: BorrowPyShared::new(py, self.state),
            data: &self.data,
        })
    }

    /// Mutably borrows the wrapped value.
    ///
    /// Borrowing fails if the underlying reference has been invalidated.
    ///
    /// Typically `T` is an iterator. If `T` is an immutable reference,
    /// `get_mut()` is useless since the inner value can't be mutated.
    ///
    /// # Safety
    ///
    /// The lifetime of the innermost object is artificial. Do not obtain and
    /// copy it out of the borrow scope.
    pub unsafe fn try_borrow_mut<'a>(
        &'a mut self,
        py: Python<'a>,
    ) -> PyResult<PyLeakedRefMut<'a, T>> {
        self.validate_generation(py)?;
        Ok(PyLeakedRefMut {
            _borrow: BorrowPyShared::new(py, self.state),
            data: &mut self.data,
        })
    }

    fn validate_generation(&self, py: Python) -> PyResult<()> {
        if self.state.current_generation(py) == self.generation {
            Ok(())
        } else {
            Err(PyErr::new::<exc::RuntimeError, _>(
                py,
                "Cannot access to leaked reference after mutation",
            ))
        }
    }
}

impl<T> UnsafePyLeaked<T> {
    /// Converts the inner value by the given function.
    ///
    /// Typically `T` is a static reference to a collection, and `U` is an
    /// iterator of that collection.
    ///
    /// # Panics
    ///
    /// Panics if the underlying reference has been invalidated.
    ///
    /// This is typically called immediately after the `UnsafePyLeaked` is
    /// obtained. At this time, the reference must be valid and no panic
    /// would occur.
    ///
    /// # Safety
    ///
    /// The lifetime of the object passed in to the function `f` is artificial.
    /// It's typically a static reference, but is valid only while the
    /// corresponding `UnsafePyLeaked` is alive. Do not copy it out of the
    /// function call.
    pub unsafe fn map<U>(self, py: Python, f: impl FnOnce(T) -> U) -> UnsafePyLeaked<U> {
        // Needs to test the generation value to make sure self.data reference
        // is still intact.
        self.validate_generation(py)
            .expect("map() over invalidated leaked reference");

        // f() could make the self.data outlive. That's why map() is unsafe.
        // In order to make this function safe, maybe we'll need a way to
        // temporarily restrict the lifetime of self.data and translate the
        // returned object back to Something<'static>.
        let new_data = f(self.data);
        UnsafePyLeaked {
            owner: self.owner,
            state: self.state,
            generation: self.generation,
            data: new_data,
        }
    }
}

/// An immutably borrowed reference to a leaked value.
pub struct PyLeakedRef<'a, T: 'a + ?Sized> {
    _borrow: BorrowPyShared<'a>,
    data: &'a T,
}

impl<'a, T: ?Sized> Deref for PyLeakedRef<'a, T> {
    type Target = T;

    fn deref(&self) -> &T {
        self.data
    }
}

/// A mutably borrowed reference to a leaked value.
pub struct PyLeakedRefMut<'a, T: 'a + ?Sized> {
    _borrow: BorrowPyShared<'a>,
    data: &'a mut T,
}

impl<'a, T: ?Sized> Deref for PyLeakedRefMut<'a, T> {
    type Target = T;

    fn deref(&self) -> &T {
        self.data
    }
}

impl<'a, T: ?Sized> DerefMut for PyLeakedRefMut<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        self.data
    }
}