1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
// Copyright (c) 2015 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use std::slice;
use super::exc;
use super::object::PyObject;
use crate::conversion::{FromPyObject, ToPyObject};
use crate::err::{self, PyErr, PyResult};
use crate::ffi::{self, Py_ssize_t};
use crate::python::{PyDrop, Python, PythonObject, ToPythonPointer};
/// Represents a Python tuple object.
pub struct PyTuple(PyObject);
pyobject_newtype!(PyTuple, PyTuple_Check, PyTuple_Type);
impl PyTuple {
/// Construct a new tuple with the given elements.
pub fn new(py: Python, elements: &[PyObject]) -> PyTuple {
unsafe {
let len = elements.len();
let ptr = ffi::PyTuple_New(len as Py_ssize_t);
let t = err::result_cast_from_owned_ptr::<PyTuple>(py, ptr).unwrap();
for (i, e) in elements.iter().enumerate() {
ffi::PyTuple_SetItem(ptr, i as Py_ssize_t, e.steal_ptr(py));
}
t
}
}
/// Retrieves the empty tuple.
pub fn empty(py: Python) -> PyTuple {
unsafe { err::result_cast_from_owned_ptr::<PyTuple>(py, ffi::PyTuple_New(0)).unwrap() }
}
/// Gets the length of the tuple.
#[inline]
pub fn len(&self, _py: Python) -> usize {
unsafe {
// non-negative Py_ssize_t should always fit into Rust uint
ffi::PyTuple_GET_SIZE(self.0.as_ptr()) as usize
}
}
/// Gets the item at the specified index.
///
/// Panics if the index is out of range.
pub fn get_item(&self, py: Python, index: usize) -> PyObject {
// TODO: reconsider whether we should panic
// It's quite inconsistent that this method takes `Python` when `len()` does not.
assert!(index < self.len(py));
unsafe {
PyObject::from_borrowed_ptr(
py,
ffi::PyTuple_GET_ITEM(self.0.as_ptr(), index as Py_ssize_t),
)
}
}
#[inline]
pub fn as_slice<'a>(&'a self, py: Python) -> &'a [PyObject] {
// This is safe because PyObject has the same memory layout as *mut ffi::PyObject,
// and because tuples are immutable.
// (We don't even need a Python token, thanks to immutability)
unsafe {
let ptr = self.0.as_ptr() as *mut ffi::PyTupleObject;
PyObject::borrow_from_owned_ptr_slice(slice::from_raw_parts(
(*ptr).ob_item.as_ptr(),
self.len(py),
))
}
}
#[inline]
pub fn iter(&self, py: Python) -> slice::Iter<PyObject> {
self.as_slice(py).iter()
}
}
fn wrong_tuple_length(py: Python, t: &PyTuple, expected_length: usize) -> PyErr {
let msg = format!(
"Expected tuple of length {}, but got tuple of length {}.",
expected_length,
t.len(py)
);
PyErr::new_lazy_init(
py.get_type::<exc::ValueError>(),
Some(msg.to_py_object(py).into_object()),
)
}
macro_rules! tuple_conversion ({$length:expr,$(($refN:ident, $n:tt, $T:ident)),+} => {
/// Converts a Rust tuple to a Python `tuple`.
impl <$($T: ToPyObject),+> ToPyObject for ($($T,)+) {
type ObjectType = PyTuple;
fn to_py_object(&self, py: Python) -> PyTuple {
PyTuple::new(py, &[
$(py_coerce_expr!(self.$n.to_py_object(py)).into_object(),)+
])
}
fn into_py_object(self, py: Python) -> PyTuple {
PyTuple::new(py, &[
$(py_coerce_expr!(self.$n.into_py_object(py)).into_object(),)+
])
}
}
/// Converts a Python `tuple` to a Rust tuple.
///
/// Note: only accepts Python `tuple` (or derived classes);
/// other types are not accepted.
impl <'s, $($T: FromPyObject<'s>),+> FromPyObject<'s> for ($($T,)+) {
fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self> {
let t = obj.cast_as::<PyTuple>(py)?;
let slice = t.as_slice(py);
if slice.len() == $length {
Ok((
$( slice[$n].extract::<$T>(py)?, )+
))
} else {
Err(wrong_tuple_length(py, t, $length))
}
}
}
});
tuple_conversion!(1, (ref0, 0, A));
tuple_conversion!(2, (ref0, 0, A), (ref1, 1, B));
tuple_conversion!(3, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C));
tuple_conversion!(4, (ref0, 0, A), (ref1, 1, B), (ref2, 2, C), (ref3, 3, D));
tuple_conversion!(
5,
(ref0, 0, A),
(ref1, 1, B),
(ref2, 2, C),
(ref3, 3, D),
(ref4, 4, E)
);
tuple_conversion!(
6,
(ref0, 0, A),
(ref1, 1, B),
(ref2, 2, C),
(ref3, 3, D),
(ref4, 4, E),
(ref5, 5, F)
);
tuple_conversion!(
7,
(ref0, 0, A),
(ref1, 1, B),
(ref2, 2, C),
(ref3, 3, D),
(ref4, 4, E),
(ref5, 5, F),
(ref6, 6, G)
);
tuple_conversion!(
8,
(ref0, 0, A),
(ref1, 1, B),
(ref2, 2, C),
(ref3, 3, D),
(ref4, 4, E),
(ref5, 5, F),
(ref6, 6, G),
(ref7, 7, H)
);
tuple_conversion!(
9,
(ref0, 0, A),
(ref1, 1, B),
(ref2, 2, C),
(ref3, 3, D),
(ref4, 4, E),
(ref5, 5, F),
(ref6, 6, G),
(ref7, 7, H),
(ref8, 8, I)
);
// Empty tuple:
/// An empty struct that represents the empty argument list.
/// Corresponds to the empty tuple `()` in Python.
///
/// # Example
/// ```
/// let gil_guard = cpython::Python::acquire_gil();
/// let py = gil_guard.python();
/// let os = py.import("os").unwrap();
/// let pid = os.call(py, "getpid", cpython::NoArgs, None).unwrap();
/// ```
#[derive(Copy, Clone, Debug)]
pub struct NoArgs;
/// Converts `NoArgs` to an empty Python tuple.
impl ToPyObject for NoArgs {
type ObjectType = PyTuple;
fn to_py_object(&self, py: Python) -> PyTuple {
PyTuple::empty(py)
}
}
extract!(obj to NoArgs;
/// Returns `Ok(NoArgs)` if the input is an empty Python tuple.
/// Otherwise, returns an error.
py => {
let t = obj.cast_as::<PyTuple>(py)?;
if t.len(py) == 0 {
Ok(NoArgs)
} else {
Err(wrong_tuple_length(py, t, 0))
}
}
);
#[cfg(test)]
mod test {
use crate::conversion::ToPyObject;
use crate::python::{Python, PythonObject};
#[test]
fn test_len() {
let gil = Python::acquire_gil();
let py = gil.python();
let tuple = (1, 2, 3).to_py_object(py);
assert_eq!(3, tuple.len(py));
assert_eq!((1, 2, 3), tuple.into_object().extract(py).unwrap());
}
}