1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
//! Work wih Python capsules
//!
use libc::c_void;
use std::ffi::{CStr, CString, NulError};
use std::mem;
use super::object::PyObject;
use crate::err::{self, PyErr, PyResult};
use crate::ffi::{PyCapsule_GetPointer, PyCapsule_Import, PyCapsule_New};
use crate::python::{Python, ToPythonPointer};
/// Capsules are the preferred way to export/import C APIs between extension modules,
/// see [Providing a C API for an Extension Module](https://docs.python.org/3/extending/extending.html#using-capsules).
///
/// In particular, capsules can be very useful to start adding Rust extensions besides
/// existing traditional C ones, be it for gradual rewrites or to extend with new functionality.
/// They can also be used for interaction between independently compiled Rust extensions if needed.
///
/// Capsules can point to data, usually static arrays of constants and function pointers,
/// or to function pointers directly. These two cases have to be handled differently in Rust,
/// and the latter is possible only for architectures were data and function pointers have
/// the same sizes.
///
/// # Examples
/// ## Using a capsule defined in another extension module
/// This retrieves and use one of the simplest capsules in the Python standard library, found in
/// the `unicodedata` module. The C API enclosed in this capsule is the same for all Python
/// versions supported by this crate. This is not the case of all capsules from the standard
/// library. For instance the `struct` referenced by `datetime.datetime_CAPI` gets a new member
/// in version 3.7.
///
/// Note: this example is a lower-level version of the [`py_capsule!`] example. Only the
/// capsule retrieval actually differs.
/// ```no_run
/// use cpython::{Python, PyCapsule};
/// use libc::{c_void, c_char, c_int};
/// use std::ffi::{CStr, CString};
/// use std::mem;
/// use std::ptr::null;
///
/// #[allow(non_camel_case_types)]
/// type Py_UCS4 = u32;
/// const UNICODE_NAME_MAXLEN: usize = 256;
///
/// #[repr(C)]
/// pub struct unicode_name_CAPI {
/// // the `ucd` signature arguments are actually optional (can be `NULL`) FFI PyObject
/// // pointers used to pass alternate (former) versions of Unicode data.
/// // We won't need to use them with an actual value in these examples, so it's enough to
/// // specify them as `*const c_void`, and it spares us a direct reference to the lower
/// // level Python FFI bindings.
/// size: c_int,
/// getname: unsafe extern "C" fn(
/// ucd: *const c_void,
/// code: Py_UCS4,
/// buffer: *const c_char,
/// buflen: c_int,
/// with_alias_and_seq: c_int,
/// ) -> c_int,
/// getcode: unsafe extern "C" fn(
/// ucd: *const c_void,
/// name: *const c_char,
/// namelen: c_int,
/// code: *const Py_UCS4,
/// ) -> c_int,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub enum UnicodeDataError {
/// InvalidCode,
/// UnknownName,
/// }
///
/// impl unicode_name_CAPI {
/// pub fn get_name(&self, code: Py_UCS4) -> Result<CString, UnicodeDataError> {
/// let mut buf: Vec<c_char> = Vec::with_capacity(UNICODE_NAME_MAXLEN);
/// let buf_ptr = buf.as_mut_ptr();
/// if unsafe {
/// ((*self).getname)(null(), code, buf_ptr, UNICODE_NAME_MAXLEN as c_int, 0)
/// } != 1 {
/// return Err(UnicodeDataError::InvalidCode);
/// }
/// mem::forget(buf);
/// Ok(unsafe { CString::from_raw(buf_ptr) })
/// }
///
/// pub fn get_code(&self, name: &CStr) -> Result<Py_UCS4, UnicodeDataError> {
/// let namelen = name.to_bytes().len() as c_int;
/// let mut code: [Py_UCS4; 1] = [0; 1];
/// if unsafe {
/// ((*self).getcode)(null(), name.as_ptr(), namelen, code.as_mut_ptr())
/// } != 1 {
/// return Err(UnicodeDataError::UnknownName);
/// }
/// Ok(code[0])
/// }
/// }
///
/// let gil = Python::acquire_gil();
/// let py = gil.python();
///
/// let capi: &unicode_name_CAPI = unsafe {
/// PyCapsule::import_data(
/// py,
/// CStr::from_bytes_with_nul_unchecked(b"unicodedata.ucnhash_CAPI\0"),
/// )
/// }
/// .unwrap();
///
/// assert_eq!(capi.get_name(32).unwrap().to_str(), Ok("SPACE"));
/// assert_eq!(capi.get_name(0), Err(UnicodeDataError::InvalidCode));
///
/// assert_eq!(
/// capi.get_code(CStr::from_bytes_with_nul(b"COMMA\0").unwrap()),
/// Ok(44)
/// );
/// assert_eq!(
/// capi.get_code(CStr::from_bytes_with_nul(b"\0").unwrap()),
/// Err(UnicodeDataError::UnknownName)
/// );
/// ```
///
/// ## Creating a capsule from Rust
/// In this example, we enclose some data and a function in a capsule, using an intermediate
/// `struct` as enclosing type, then retrieve them back and use them.
///
/// Warning: you definitely need to declare the data as `static`. If it's
/// only `const`, it's possible it would get cloned elsewhere, with the orginal
/// location being deallocated before it's actually used from another Python
/// extension.
///
///
/// ```
/// use libc::{c_void, c_int};
/// use cpython::{PyCapsule, Python};
/// use std::ffi::{CStr, CString};
///
/// #[repr(C)]
/// struct CapsData {
/// value: c_int,
/// fun: fn(c_int, c_int) -> c_int,
/// }
///
/// fn add(a: c_int, b: c_int) -> c_int {
/// a + b
/// }
///
/// static DATA: CapsData = CapsData{value: 1, fun: add};
///
/// fn main() {
/// let gil = Python::acquire_gil();
/// let py = gil.python();
/// let caps = PyCapsule::new_data(py, &DATA, "somemod.capsdata").unwrap();
///
/// let retrieved: &CapsData = unsafe {caps.data_ref("somemod.capsdata")}.unwrap();
/// assert_eq!(retrieved.value, 1);
/// assert_eq!((retrieved.fun)(2 as c_int, 3 as c_int), 5);
/// }
/// ```
///
/// Of course, a more realistic example would be to store the capsule in a Python module,
/// allowing another extension (possibly foreign) to retrieve and use it.
/// Note that in that case, the capsule `name` must be full dotted name of the capsule object,
/// as we're doing here.
/// ```
/// # use libc::c_int;
/// # use cpython::{PyCapsule, py_module_initializer};
/// # #[repr(C)]
/// # struct CapsData {
/// # value: c_int,
/// # fun: fn(c_int, c_int) -> c_int,
/// # }
/// # fn add(a: c_int, b: c_int) -> c_int {
/// # a + b
/// # }
/// # static DATA: CapsData = CapsData{value: 1, fun: add};
/// py_module_initializer!(somemod, |py, m| {
/// m.add(py, "__doc__", "A module holding a capsule")?;
/// m.add(py, "capsdata", PyCapsule::new_data(py, &DATA, "somemod.capsdata").unwrap())?;
/// Ok(())
/// });
/// # fn main() {}
/// ```
/// Another Rust extension could then declare `CapsData` and use `PyCapsule::import_data` to
/// fetch it back.
///
/// [`py_capsule!`]: macro.py_capsule.html
pub struct PyCapsule(PyObject);
pyobject_newtype!(PyCapsule, PyCapsule_CheckExact, PyCapsule_Type);
/// Macro to retrieve a Python capsule pointing to an array of data, with a layer of caching.
///
/// For more details on capsules, see [`PyCapsule`]
///
/// The caller has to define an appropriate `repr(C)` `struct` first, and put it in
/// scope (`use`) if needed along the macro invocation.
///
/// # Usage
///
/// ```ignore
/// py_capsule!(from some.python.module import capsulename as rustmodule for CapsuleStruct)
/// ```
///
/// where `CapsuleStruct` is the above mentioned `struct` defined by the caller.
///
/// The macro defines a Rust module named `rustmodule`, as specified by the caller.
/// This module provides a retrieval function with the following signature:
///
/// ```ignore
/// mod rustmodule {
/// pub unsafe fn retrieve<'a>(py: Python) -> PyResult<&'a CapsuleStruct> { ... }
/// }
/// ```
///
/// The `retrieve()` function is unsafe for the same reasons as [`PyCapsule::import_data`],
/// upon which it relies.
///
/// The newly defined module also contains a `RawPyObject` type suitable to represent C-level
/// Python objects. It can be used in `cpython` public API involving raw FFI pointers, such as
/// [`from_owned_ptr`].
///
/// # Examples
/// ## Using a capsule from the standard library
///
/// This retrieves and uses one of the simplest capsules in the Python standard library, found in
/// the `unicodedata` module. The C API enclosed in this capsule is the same for all Python
/// versions supported by this crate.
///
/// In this case, as with all capsules from the Python standard library, the capsule data
/// is an array (`static struct`) with constants and function pointers.
/// ```no_run
/// use cpython::{Python, PyCapsule, py_capsule};
/// use libc::{c_char, c_int};
/// use std::ffi::{c_void, CStr, CString};
/// use std::mem;
/// use std::ptr::null;
///
/// #[allow(non_camel_case_types)]
/// type Py_UCS4 = u32;
/// const UNICODE_NAME_MAXLEN: usize = 256;
///
/// #[repr(C)]
/// pub struct unicode_name_CAPI {
/// // the `ucd` signature arguments are actually optional (can be `NULL`) FFI PyObject
/// // pointers used to pass alternate (former) versions of Unicode data.
/// // We won't need to use them with an actual value in these examples, so it's enough to
/// // specify them as `const c_void`, and it spares us a direct reference to the lower
/// // level Python FFI bindings.
/// size: c_int,
/// getname: unsafe extern "C" fn(
/// ucd: *const c_void,
/// code: Py_UCS4,
/// buffer: *const c_char,
/// buflen: c_int,
/// with_alias_and_seq: c_int,
/// ) -> c_int,
/// getcode: unsafe extern "C" fn(
/// ucd: *const c_void,
/// name: *const c_char,
/// namelen: c_int,
/// code: *const Py_UCS4,
/// ) -> c_int,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub enum UnicodeDataError {
/// InvalidCode,
/// UnknownName,
/// }
///
/// impl unicode_name_CAPI {
/// pub fn get_name(&self, code: Py_UCS4) -> Result<CString, UnicodeDataError> {
/// let mut buf: Vec<c_char> = Vec::with_capacity(UNICODE_NAME_MAXLEN);
/// let buf_ptr = buf.as_mut_ptr();
/// if unsafe {
/// ((*self).getname)(null(), code, buf_ptr, UNICODE_NAME_MAXLEN as c_int, 0)
/// } != 1 {
/// return Err(UnicodeDataError::InvalidCode);
/// }
/// mem::forget(buf);
/// Ok(unsafe { CString::from_raw(buf_ptr) })
/// }
///
/// pub fn get_code(&self, name: &CStr) -> Result<Py_UCS4, UnicodeDataError> {
/// let namelen = name.to_bytes().len() as c_int;
/// let mut code: [Py_UCS4; 1] = [0; 1];
/// if unsafe {
/// ((*self).getcode)(null(), name.as_ptr(), namelen, code.as_mut_ptr())
/// } != 1 {
/// return Err(UnicodeDataError::UnknownName);
/// }
/// Ok(code[0])
/// }
/// }
///
/// py_capsule!(from unicodedata import ucnhash_CAPI as capsmod for unicode_name_CAPI);
///
/// fn main() {
/// let gil = Python::acquire_gil();
/// let py = gil.python();
///
/// let capi = unsafe { capsmod::retrieve(py).unwrap() };
/// assert_eq!(capi.get_name(32).unwrap().to_str(), Ok("SPACE"));
/// assert_eq!(capi.get_name(0), Err(UnicodeDataError::InvalidCode));
///
/// assert_eq!(capi.get_code(CStr::from_bytes_with_nul(b"COMMA\0").unwrap()), Ok(44));
/// assert_eq!(capi.get_code(CStr::from_bytes_with_nul(b"\0").unwrap()),
/// Err(UnicodeDataError::UnknownName));
/// }
/// ```
///
/// ## With Python objects
///
/// In this example, we lend a Python object and receive a new one of which we take ownership.
///
/// ```
/// use cpython::{PyCapsule, PyObject, PyResult, Python, py_capsule};
/// use libc::c_void;
///
/// // In the struct, we still have to use c_void for C-level Python objects.
/// #[repr(C)]
/// pub struct spawn_CAPI {
/// spawnfrom: unsafe extern "C" fn(obj: *const c_void) -> *mut c_void,
/// }
///
/// py_capsule!(from some.mod import CAPI as capsmod for spawn_CAPI);
///
/// impl spawn_CAPI {
/// pub fn spawn_from(&self, py: Python, obj: PyObject) -> PyResult<PyObject> {
/// let raw = obj.as_ptr() as *const c_void;
/// Ok(unsafe {
/// PyObject::from_owned_ptr(
/// py,
/// ((*self).spawnfrom)(raw) as *mut capsmod::RawPyObject)
/// })
/// }
/// }
///
/// # fn main() {} // just to avoid confusion with use due to insertion of main() in doctests
/// ```
///
/// [`PyCapsule`]: struct.PyCapsule.html
/// [`PyCapsule::import_data`]: struct.PyCapsule.html#method.import_data
#[macro_export]
macro_rules! py_capsule {
(from $($capsmod:ident).+ import $capsname:ident as $rustmod:ident for $ruststruct: ident ) => (
mod $rustmod {
use super::*;
use std::sync::Once;
use $crate::PyClone;
static mut CAPS_DATA: Option<$crate::PyResult<&$ruststruct>> = None;
static INIT: Once = Once::new();
pub type RawPyObject = $crate::_detail::ffi::PyObject;
pub unsafe fn retrieve<'a>(py: $crate::Python) -> $crate::PyResult<&'a $ruststruct> {
INIT.call_once(|| {
let caps_name =
std::ffi::CStr::from_bytes_with_nul_unchecked(
concat!($( stringify!($capsmod), "."),*,
stringify!($capsname),
"\0").as_bytes());
CAPS_DATA = Some($crate::PyCapsule::import_data(py, caps_name));
});
match CAPS_DATA {
Some(Ok(d)) => Ok(d),
Some(Err(ref e)) => Err(e.clone_ref(py)),
_ => panic!("Uninitialized"), // can't happen
}
}
}
)
}
/// Macro to retrieve a function pointer capsule.
///
/// This is not suitable for architectures where the sizes of function and data pointers
/// differ.
/// For general explanations about capsules, see [`PyCapsule`].
///
/// # Usage
///
/// ```ignore
/// py_capsule_fn!(from some.python.module import capsulename as rustmodule
/// signature (args) -> ret_type)
/// ```
///
/// Similarly to [py_capsule!](macro_py_capsule), the macro defines
///
/// - a Rust module according to the name provided by the caller (here, `rustmodule`)
/// - a type alias for the given signature
/// - a retrieval function:
///
/// ```ignore
/// mod $rustmod {
/// pub type CapsuleFn = unsafe extern "C" (args) -> ret_type ;
/// pub unsafe fn retrieve<'a>(py: Python) -> PyResult<CapsuleFn) { ... }
/// }
/// ```
/// - a `RawPyObject` type suitable for signatures that involve Python C objects;
/// it can be used in `cpython` public API involving raw FFI pointers, such as
/// [`from_owned_ptr`].
///
/// The first call to `retrieve()` is cached for subsequent calls.
///
/// # Examples
/// ## Full example with primitive types
/// There is in the Python library no capsule enclosing a function pointer directly,
/// although the documentation presents it as a valid use-case. For this example, we'll
/// therefore have to create one, using the [`PyCapsule`] constructor, and to set it in an
/// existing module (not to imply that a real extension should follow that example
/// and set capsules in modules they don't define!)
///
///
/// ```
/// use cpython::{PyCapsule, Python, FromPyObject, py_capsule_fn};
/// use libc::{c_int, c_void};
///
/// extern "C" fn inc(a: c_int) -> c_int {
/// a + 1
/// }
///
/// /// for testing purposes, stores a capsule named `sys.capsfn`` pointing to `inc()`.
/// fn create_capsule() {
/// let gil = Python::acquire_gil();
/// let py = gil.python();
/// let pymod = py.import("sys").unwrap();
/// let caps = PyCapsule::new(py, inc as *const c_void, "sys.capsfn").unwrap();
/// pymod.add(py, "capsfn", caps).unwrap();
/// }
///
/// py_capsule_fn!(from sys import capsfn as capsmod signature (a: c_int) -> c_int);
///
/// // One could, e.g., reexport if needed:
/// pub use capsmod::CapsuleFn;
///
/// fn retrieve_use_capsule() {
/// let gil = Python::acquire_gil();
/// let py = gil.python();
/// let fun = capsmod::retrieve(py).unwrap();
/// assert_eq!( unsafe { fun(1) }, 2);
///
/// // let's demonstrate the (reexported) function type
/// let g: CapsuleFn = fun;
/// }
///
/// fn main() {
/// create_capsule();
/// retrieve_use_capsule();
/// // second call uses the cached function pointer
/// retrieve_use_capsule();
/// }
/// ```
///
/// ## With Python objects
///
/// In this example, we lend a Python object and receive a new one of which we take ownership.
///
/// ```
/// use cpython::{PyCapsule, PyObject, PyResult, Python, py_capsule_fn};
///
/// py_capsule_fn!(from some.mod import capsfn as capsmod
/// signature (raw: *mut RawPyObject) -> *mut RawPyObject);
///
/// fn retrieve_use_capsule(py: Python, obj: PyObject) -> PyResult<PyObject> {
/// let fun = capsmod::retrieve(py)?;
/// let raw = obj.as_ptr();
/// Ok(unsafe { PyObject::from_owned_ptr(py, fun(raw)) })
/// }
///
/// # fn main() {} // avoid problems with injection of declarations with Rust 1.25
///
/// ```
///
/// [`PyCapsule`]: struct.PyCapsule.html
/// [`from_owned_ptr`]: struct.PyObject.html#method.from_owned_ptr`
#[macro_export]
macro_rules! py_capsule_fn {
(from $($capsmod:ident).+ import $capsname:ident as $rustmod:ident signature $( $sig: tt)* ) => (
mod $rustmod {
use super::*;
use std::sync::Once;
use $crate::PyClone;
pub type CapsuleFn = unsafe extern "C" fn $( $sig )*;
pub type RawPyObject = $crate::_detail::ffi::PyObject;
static mut CAPS_FN: Option<$crate::PyResult<CapsuleFn>> = None;
static INIT: Once = Once::new();
fn import(py: $crate::Python) -> $crate::PyResult<CapsuleFn> {
unsafe {
let caps_name =
std::ffi::CStr::from_bytes_with_nul_unchecked(
concat!($( stringify!($capsmod), "."),*,
stringify!($capsname),
"\0").as_bytes());
Ok(::std::mem::transmute($crate::PyCapsule::import(py, caps_name)?))
}
}
pub fn retrieve(py: $crate::Python) -> $crate::PyResult<CapsuleFn> {
unsafe {
INIT.call_once(|| { CAPS_FN = Some(import(py)) });
match CAPS_FN.as_ref().unwrap() {
&Ok(f) => Ok(f),
&Err(ref e) => Err(e.clone_ref(py)),
}
}
}
}
)
}
impl PyCapsule {
/// Retrieve the contents of a capsule pointing to some data as a reference.
///
/// The retrieved data would typically be an array of static data and/or function pointers.
/// This method doesn't work for standalone function pointers.
///
/// # Safety
/// This method is unsafe, because
/// - nothing guarantees that the `T` type is appropriate for the data referenced by the capsule
/// pointer
/// - the returned lifetime doesn't guarantee either to cover the actual lifetime of the data
/// (although capsule data is usually static)
pub unsafe fn import_data<'a, T>(py: Python, name: &CStr) -> PyResult<&'a T> {
Ok(&*(Self::import(py, name)? as *const T))
}
/// Retrieves the contents of a capsule as a void pointer by its name.
///
/// This is suitable in particular for later conversion as a function pointer
/// with `mem::transmute`, for architectures where data and function pointers have
/// the same size (see details about this in the
/// [documentation](https://doc.rust-lang.org/std/mem/fn.transmute.html#examples)
/// of the Rust standard library).
pub fn import(py: Python, name: &CStr) -> PyResult<*const c_void> {
let caps_ptr = unsafe { PyCapsule_Import(name.as_ptr(), 0) };
if caps_ptr.is_null() {
return Err(PyErr::fetch(py));
}
Ok(caps_ptr)
}
/// Convenience method to create a capsule for some data
///
/// The encapsuled data may be an array of functions, but it can't be itself a
/// function directly.
///
/// May panic when running out of memory.
///
pub fn new_data<T, N>(py: Python, data: &'static T, name: N) -> Result<Self, NulError>
where
N: Into<Vec<u8>>,
{
Self::new(py, data as *const T as *const c_void, name)
}
/// Creates a new capsule from a raw void pointer
///
/// This is suitable in particular to store a function pointer in a capsule. These
/// can be obtained simply by a simple cast:
///
/// ```
/// use libc::c_void;
///
/// extern "C" fn inc(a: i32) -> i32 {
/// a + 1
/// }
///
/// fn main() {
/// let ptr = inc as *const c_void;
/// }
/// ```
///
/// # Errors
/// This method returns `NulError` if `name` contains a 0 byte (see also `CString::new`)
pub fn new<N>(py: Python, pointer: *const c_void, name: N) -> Result<Self, NulError>
where
N: Into<Vec<u8>>,
{
let name = CString::new(name)?;
let caps = unsafe {
Ok(err::cast_from_owned_ptr_or_panic(
py,
PyCapsule_New(pointer as *mut c_void, name.as_ptr(), None),
))
};
// it is required that the capsule name outlives the call as a char*
// TODO implement a proper PyCapsule_Destructor to release it properly
mem::forget(name);
caps
}
/// Returns a reference to the capsule data.
///
/// The name must match exactly the one given at capsule creation time (see `new_data`) and
/// is converted to a C string under the hood. If that's too much overhead, consider using
/// `data_ref_cstr()` or caching strategies.
///
/// This is unsafe, because
/// - nothing guarantees that the `T` type is appropriate for the data referenced by the capsule
/// pointer
/// - the returned lifetime doesn't guarantee either to cover the actual lifetime of the data
/// (although capsule data is usually static)
///
/// # Errors
/// This method returns `NulError` if `name` contains a 0 byte (see also `CString::new`)
pub unsafe fn data_ref<'a, T, N>(&self, name: N) -> Result<&'a T, NulError>
where
N: Into<Vec<u8>>,
{
Ok(self.data_ref_cstr(&CString::new(name)?))
}
/// Returns a reference to the capsule data.
///
/// This is identical to `data_ref`, except for the name passing. This allows to use
/// lower level constructs without overhead, such as `CStr::from_bytes_with_nul_unchecked`
/// or the `cstr!` macro of `rust-cpython`
pub unsafe fn data_ref_cstr<'a, T>(&self, name: &CStr) -> &'a T {
&*(PyCapsule_GetPointer(self.as_ptr(), name.as_ptr()) as *const T)
}
}