1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
//! Work wih Python capsules
//!
use libc::c_void;
use std::ffi::{CStr, CString, NulError};
use std::mem;

use super::object::PyObject;
use crate::err::{self, PyErr, PyResult};
use crate::ffi::{PyCapsule_GetPointer, PyCapsule_Import, PyCapsule_New};
use crate::python::{Python, ToPythonPointer};

/// Capsules are the preferred way to export/import C APIs between extension modules,
/// see [Providing a C API for an Extension Module](https://docs.python.org/3/extending/extending.html#using-capsules).
///
/// In particular, capsules can be very useful to start adding Rust extensions besides
/// existing traditional C ones, be it for gradual rewrites or to extend with new functionality.
/// They can also be used for interaction between independently compiled Rust extensions if needed.
///
/// Capsules can point to data, usually static arrays of constants and function pointers,
/// or to function pointers directly. These two cases have to be handled differently in Rust,
/// and the latter is possible only for architectures were data and function pointers have
/// the same sizes.
///
/// # Examples
/// ## Using a capsule defined in another extension module
/// This retrieves and use one of the simplest capsules in the Python standard library, found in
/// the `unicodedata` module. The C API enclosed in this capsule is the same for all Python
/// versions supported by this crate. This is not the case of all capsules from the standard
/// library. For instance the `struct` referenced by `datetime.datetime_CAPI` gets a new member
/// in version 3.7.
///
/// Note: this example is a lower-level version of the [`py_capsule!`] example. Only the
/// capsule retrieval actually differs.
/// ```no_run
/// use cpython::{Python, PyCapsule};
/// use libc::{c_void, c_char, c_int};
/// use std::ffi::{CStr, CString};
/// use std::mem;
/// use std::ptr::null;
///
/// #[allow(non_camel_case_types)]
/// type Py_UCS4 = u32;
/// const UNICODE_NAME_MAXLEN: usize = 256;
///
/// #[repr(C)]
/// pub struct unicode_name_CAPI {
///     // the `ucd` signature arguments are actually optional (can be `NULL`) FFI PyObject
///     // pointers used to pass alternate (former) versions of Unicode data.
///     // We won't need to use them with an actual value in these examples, so it's enough to
///     // specify them as `*const c_void`, and it spares us a direct reference to the lower
///     // level Python FFI bindings.
///     size: c_int,
///     getname: unsafe extern "C" fn(
///         ucd: *const c_void,
///         code: Py_UCS4,
///         buffer: *const c_char,
///         buflen: c_int,
///         with_alias_and_seq: c_int,
///     ) -> c_int,
///     getcode: unsafe extern "C" fn(
///         ucd: *const c_void,
///         name: *const c_char,
///         namelen: c_int,
///         code: *const Py_UCS4,
///     ) -> c_int,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub enum UnicodeDataError {
///     InvalidCode,
///     UnknownName,
/// }
///
/// impl unicode_name_CAPI {
///     pub fn get_name(&self, code: Py_UCS4) -> Result<CString, UnicodeDataError> {
///         let mut buf: Vec<c_char> = Vec::with_capacity(UNICODE_NAME_MAXLEN);
///         let buf_ptr = buf.as_mut_ptr();
///         if unsafe {
///           ((*self).getname)(null(), code, buf_ptr, UNICODE_NAME_MAXLEN as c_int, 0)
///         } != 1 {
///             return Err(UnicodeDataError::InvalidCode);
///         }
///         mem::forget(buf);
///         Ok(unsafe { CString::from_raw(buf_ptr) })
///     }
///
///     pub fn get_code(&self, name: &CStr) -> Result<Py_UCS4, UnicodeDataError> {
///         let namelen = name.to_bytes().len() as c_int;
///         let mut code: [Py_UCS4; 1] = [0; 1];
///         if unsafe {
///             ((*self).getcode)(null(), name.as_ptr(), namelen, code.as_mut_ptr())
///         } != 1 {
///             return Err(UnicodeDataError::UnknownName);
///         }
///         Ok(code[0])
///     }
/// }
///
/// let gil = Python::acquire_gil();
/// let py = gil.python();
///
/// let capi: &unicode_name_CAPI = unsafe {
///     PyCapsule::import_data(
///         py,
///         CStr::from_bytes_with_nul_unchecked(b"unicodedata.ucnhash_CAPI\0"),
///     )
/// }
/// .unwrap();
///
/// assert_eq!(capi.get_name(32).unwrap().to_str(), Ok("SPACE"));
/// assert_eq!(capi.get_name(0), Err(UnicodeDataError::InvalidCode));
///
/// assert_eq!(
///     capi.get_code(CStr::from_bytes_with_nul(b"COMMA\0").unwrap()),
///     Ok(44)
/// );
/// assert_eq!(
///     capi.get_code(CStr::from_bytes_with_nul(b"\0").unwrap()),
///     Err(UnicodeDataError::UnknownName)
/// );
/// ```
///
/// ## Creating a capsule from Rust
/// In this example, we enclose some data and a function in a capsule, using an intermediate
/// `struct` as enclosing type, then retrieve them back and use them.
///
/// Warning: you definitely need to declare the data as `static`. If it's
/// only `const`, it's possible it would get cloned elsewhere, with the orginal
/// location being deallocated before it's actually used from another Python
/// extension.
///
///
/// ```
/// use libc::{c_void, c_int};
/// use cpython::{PyCapsule, Python};
/// use std::ffi::{CStr, CString};
///
/// #[repr(C)]
/// struct CapsData {
///     value: c_int,
///     fun: fn(c_int, c_int) -> c_int,
/// }
///
/// fn add(a: c_int, b: c_int) -> c_int {
///     a + b
/// }
///
/// static DATA: CapsData = CapsData{value: 1, fun: add};
///
/// fn main() {
///     let gil = Python::acquire_gil();
///     let py = gil.python();
///     let caps = PyCapsule::new_data(py, &DATA, "somemod.capsdata").unwrap();
///
///     let retrieved: &CapsData = unsafe {caps.data_ref("somemod.capsdata")}.unwrap();
///     assert_eq!(retrieved.value, 1);
///     assert_eq!((retrieved.fun)(2 as c_int, 3 as c_int), 5);
/// }
/// ```
///
/// Of course, a more realistic example would be to store the capsule in a Python module,
/// allowing another extension (possibly foreign) to retrieve and use it.
/// Note that in that case, the capsule `name` must be full dotted name of the capsule object,
/// as we're doing here.
/// ```
/// # use libc::c_int;
/// # use cpython::{PyCapsule, py_module_initializer};
/// # #[repr(C)]
/// # struct CapsData {
/// #     value: c_int,
/// #     fun: fn(c_int, c_int) -> c_int,
/// # }
/// # fn add(a: c_int, b: c_int) -> c_int {
/// #     a + b
/// # }
/// # static DATA: CapsData = CapsData{value: 1, fun: add};
/// py_module_initializer!(somemod, |py, m| {
///   m.add(py, "__doc__", "A module holding a capsule")?;
///   m.add(py, "capsdata", PyCapsule::new_data(py, &DATA, "somemod.capsdata").unwrap())?;
///   Ok(())
/// });
/// # fn main() {}
/// ```
/// Another Rust extension could then declare `CapsData` and use `PyCapsule::import_data` to
/// fetch it back.
///
/// [`py_capsule!`]: macro.py_capsule.html
pub struct PyCapsule(PyObject);

pyobject_newtype!(PyCapsule, PyCapsule_CheckExact, PyCapsule_Type);

/// Macro to retrieve a Python capsule pointing to an array of data, with a layer of caching.
///
/// For more details on capsules, see [`PyCapsule`]
///
/// The caller has to define an appropriate `repr(C)` `struct` first, and put it in
/// scope (`use`) if needed along the macro invocation.
///
/// # Usage
///
/// ```ignore
///   py_capsule!(from some.python.module import capsulename as rustmodule for CapsuleStruct)
/// ```
///
/// where `CapsuleStruct` is the above mentioned `struct` defined by the caller.
///
/// The macro defines a Rust module named `rustmodule`, as specified by the caller.
/// This module provides a retrieval function with the following signature:
///
/// ```ignore
/// mod rustmodule {
///     pub unsafe fn retrieve<'a>(py: Python) -> PyResult<&'a CapsuleStruct> { ... }
/// }
/// ```
///
/// The `retrieve()` function is unsafe for the same reasons as [`PyCapsule::import_data`],
/// upon which it relies.
///
/// The newly defined module also contains a `RawPyObject` type suitable to represent C-level
/// Python objects. It can be used in `cpython` public API involving raw FFI pointers, such as
/// [`from_owned_ptr`].
///
/// # Examples
/// ## Using a capsule from the standard library
///
/// This retrieves and uses one of the simplest capsules in the Python standard library, found in
/// the `unicodedata` module. The C API enclosed in this capsule is the same for all Python
/// versions supported by this crate.
///
/// In this case, as with all capsules from the Python standard library, the capsule data
/// is an array (`static struct`) with constants and function pointers.
/// ```no_run
/// use cpython::{Python, PyCapsule, py_capsule};
/// use libc::{c_char, c_int};
/// use std::ffi::{c_void, CStr, CString};
/// use std::mem;
/// use std::ptr::null;
///
/// #[allow(non_camel_case_types)]
/// type Py_UCS4 = u32;
/// const UNICODE_NAME_MAXLEN: usize = 256;
///
/// #[repr(C)]
/// pub struct unicode_name_CAPI {
///     // the `ucd` signature arguments are actually optional (can be `NULL`) FFI PyObject
///     // pointers used to pass alternate (former) versions of Unicode data.
///     // We won't need to use them with an actual value in these examples, so it's enough to
///     // specify them as `const c_void`, and it spares us a direct reference to the lower
///     // level Python FFI bindings.
///     size: c_int,
///     getname: unsafe extern "C" fn(
///         ucd: *const c_void,
///         code: Py_UCS4,
///         buffer: *const c_char,
///         buflen: c_int,
///         with_alias_and_seq: c_int,
///     ) -> c_int,
///     getcode: unsafe extern "C" fn(
///         ucd: *const c_void,
///         name: *const c_char,
///         namelen: c_int,
///         code: *const Py_UCS4,
///     ) -> c_int,
/// }
///
/// #[derive(Debug, PartialEq)]
/// pub enum UnicodeDataError {
///     InvalidCode,
///     UnknownName,
/// }
///
/// impl unicode_name_CAPI {
///     pub fn get_name(&self, code: Py_UCS4) -> Result<CString, UnicodeDataError> {
///         let mut buf: Vec<c_char> = Vec::with_capacity(UNICODE_NAME_MAXLEN);
///         let buf_ptr = buf.as_mut_ptr();
///         if unsafe {
///           ((*self).getname)(null(), code, buf_ptr, UNICODE_NAME_MAXLEN as c_int, 0)
///         } != 1 {
///             return Err(UnicodeDataError::InvalidCode);
///         }
///         mem::forget(buf);
///         Ok(unsafe { CString::from_raw(buf_ptr) })
///     }
///
///     pub fn get_code(&self, name: &CStr) -> Result<Py_UCS4, UnicodeDataError> {
///         let namelen = name.to_bytes().len() as c_int;
///         let mut code: [Py_UCS4; 1] = [0; 1];
///         if unsafe {
///             ((*self).getcode)(null(), name.as_ptr(), namelen, code.as_mut_ptr())
///         } != 1 {
///             return Err(UnicodeDataError::UnknownName);
///         }
///         Ok(code[0])
///     }
/// }
///
/// py_capsule!(from unicodedata import ucnhash_CAPI as capsmod for unicode_name_CAPI);
///
/// fn main() {
///     let gil = Python::acquire_gil();
///     let py = gil.python();
///
///     let capi = unsafe { capsmod::retrieve(py).unwrap() };
///     assert_eq!(capi.get_name(32).unwrap().to_str(), Ok("SPACE"));
///     assert_eq!(capi.get_name(0), Err(UnicodeDataError::InvalidCode));
///
///     assert_eq!(capi.get_code(CStr::from_bytes_with_nul(b"COMMA\0").unwrap()), Ok(44));
///     assert_eq!(capi.get_code(CStr::from_bytes_with_nul(b"\0").unwrap()),
///                Err(UnicodeDataError::UnknownName));
/// }
/// ```
///
/// ## With Python objects
///
/// In this example, we lend a Python object and receive a new one of which we take ownership.
///
/// ```
/// use cpython::{PyCapsule, PyObject, PyResult, Python, py_capsule};
/// use libc::c_void;
///
/// // In the struct, we still have to use c_void for C-level Python objects.
/// #[repr(C)]
/// pub struct spawn_CAPI {
///     spawnfrom: unsafe extern "C" fn(obj: *const c_void) -> *mut c_void,
/// }
///
/// py_capsule!(from some.mod import CAPI as capsmod for spawn_CAPI);
///
/// impl spawn_CAPI {
///    pub fn spawn_from(&self, py: Python, obj: PyObject) -> PyResult<PyObject> {
///        let raw = obj.as_ptr() as *const c_void;
///        Ok(unsafe {
///            PyObject::from_owned_ptr(
///                py,
///                ((*self).spawnfrom)(raw) as *mut capsmod::RawPyObject)
///        })
///    }
/// }
///
/// # fn main() {}  // just to avoid confusion with use due to insertion of main() in doctests
/// ```
///
/// [`PyCapsule`]: struct.PyCapsule.html
/// [`PyCapsule::import_data`]: struct.PyCapsule.html#method.import_data
#[macro_export]
macro_rules! py_capsule {
    (from $($capsmod:ident).+ import $capsname:ident as $rustmod:ident for $ruststruct: ident ) => (
        mod $rustmod {
            use super::*;
            use std::sync::Once;
            use $crate::PyClone;

            static mut CAPS_DATA: Option<$crate::PyResult<&$ruststruct>> = None;

            static INIT: Once = Once::new();

            pub type RawPyObject = $crate::_detail::ffi::PyObject;

            pub unsafe fn retrieve<'a>(py: $crate::Python) -> $crate::PyResult<&'a $ruststruct> {
                INIT.call_once(|| {
                    let caps_name =
                        std::ffi::CStr::from_bytes_with_nul_unchecked(
                            concat!($( stringify!($capsmod), "."),*,
                                    stringify!($capsname),
                                    "\0").as_bytes());
                    CAPS_DATA = Some($crate::PyCapsule::import_data(py, caps_name));
                });
                match CAPS_DATA {
                    Some(Ok(d)) => Ok(d),
                    Some(Err(ref e)) => Err(e.clone_ref(py)),
                    _ => panic!("Uninitialized"), // can't happen
                }
            }
        }
    )
}

/// Macro to retrieve a function pointer capsule.
///
/// This is not suitable for architectures where the sizes of function and data pointers
/// differ.
/// For general explanations about capsules, see [`PyCapsule`].
///
/// # Usage
///
/// ```ignore
///    py_capsule_fn!(from some.python.module import capsulename as rustmodule
///                       signature (args) -> ret_type)
/// ```
///
/// Similarly to [py_capsule!](macro_py_capsule), the macro defines
///
/// - a Rust module according to the name provided by the caller (here, `rustmodule`)
/// - a type alias for the given signature
/// - a retrieval function:
///
/// ```ignore
/// mod $rustmod {
///     pub type CapsuleFn = unsafe extern "C" (args) -> ret_type ;
///     pub unsafe fn retrieve<'a>(py: Python) -> PyResult<CapsuleFn) { ... }
/// }
/// ```
/// - a `RawPyObject` type suitable for signatures that involve Python C objects;
///   it can be used in `cpython` public API involving raw FFI pointers, such as
///   [`from_owned_ptr`].
///
/// The first call to `retrieve()` is cached for subsequent calls.
///
/// # Examples
/// ## Full example with primitive types
/// There is in the Python library no capsule enclosing a function pointer directly,
/// although the documentation presents it as a valid use-case. For this example, we'll
/// therefore have to create one, using the [`PyCapsule`] constructor, and to set it in an
/// existing  module (not to imply that a real extension should follow that example
/// and set capsules in modules they don't define!)
///
///
/// ```
/// use cpython::{PyCapsule, Python, FromPyObject, py_capsule_fn};
/// use libc::{c_int, c_void};
///
/// extern "C" fn inc(a: c_int) -> c_int {
///     a + 1
/// }
///
/// /// for testing purposes, stores a capsule named `sys.capsfn`` pointing to `inc()`.
/// fn create_capsule() {
///     let gil = Python::acquire_gil();
///     let py = gil.python();
///     let pymod = py.import("sys").unwrap();
///     let caps = PyCapsule::new(py, inc as *const c_void, "sys.capsfn").unwrap();
///     pymod.add(py, "capsfn", caps).unwrap();
///  }
///
/// py_capsule_fn!(from sys import capsfn as capsmod signature (a: c_int) -> c_int);
///
/// // One could, e.g., reexport if needed:
/// pub use capsmod::CapsuleFn;
///
/// fn retrieve_use_capsule() {
///     let gil = Python::acquire_gil();
///     let py = gil.python();
///     let fun = capsmod::retrieve(py).unwrap();
///     assert_eq!( unsafe { fun(1) }, 2);
///
///     // let's demonstrate the (reexported) function type
///     let g: CapsuleFn = fun;
/// }
///
/// fn main() {
///     create_capsule();
///     retrieve_use_capsule();
///     // second call uses the cached function pointer
///     retrieve_use_capsule();
/// }
/// ```
///
/// ## With Python objects
///
/// In this example, we lend a Python object and receive a new one of which we take ownership.
///
/// ```
/// use cpython::{PyCapsule, PyObject, PyResult, Python, py_capsule_fn};
///
/// py_capsule_fn!(from some.mod import capsfn as capsmod
///     signature (raw: *mut RawPyObject) -> *mut RawPyObject);
///
/// fn retrieve_use_capsule(py: Python, obj: PyObject) -> PyResult<PyObject> {
///     let fun = capsmod::retrieve(py)?;
///     let raw = obj.as_ptr();
///     Ok(unsafe { PyObject::from_owned_ptr(py, fun(raw)) })
/// }
///
/// # fn main() {} // avoid problems with injection of declarations with Rust 1.25
///
/// ```
///
/// [`PyCapsule`]: struct.PyCapsule.html
/// [`from_owned_ptr`]: struct.PyObject.html#method.from_owned_ptr`
#[macro_export]
macro_rules! py_capsule_fn {
    (from $($capsmod:ident).+ import $capsname:ident as $rustmod:ident signature $( $sig: tt)* ) => (
        mod $rustmod {
            use super::*;
            use std::sync::Once;
            use $crate::PyClone;

            pub type CapsuleFn = unsafe extern "C" fn $( $sig )*;
            pub type RawPyObject = $crate::_detail::ffi::PyObject;

            static mut CAPS_FN: Option<$crate::PyResult<CapsuleFn>> = None;

            static INIT: Once = Once::new();

            fn import(py: $crate::Python) -> $crate::PyResult<CapsuleFn> {
                unsafe {
                    let caps_name =
                        std::ffi::CStr::from_bytes_with_nul_unchecked(
                            concat!($( stringify!($capsmod), "."),*,
                                    stringify!($capsname),
                                    "\0").as_bytes());
                    Ok(::std::mem::transmute($crate::PyCapsule::import(py, caps_name)?))
                }
            }

            pub fn retrieve(py: $crate::Python) -> $crate::PyResult<CapsuleFn> {
                unsafe {
                    INIT.call_once(|| { CAPS_FN = Some(import(py)) });
                    match CAPS_FN.as_ref().unwrap() {
                        &Ok(f) => Ok(f),
                        &Err(ref e) => Err(e.clone_ref(py)),
                    }
                }
            }
        }
    )
}

impl PyCapsule {
    /// Retrieve the contents of a capsule pointing to some data as a reference.
    ///
    /// The retrieved data would typically be an array of static data and/or function pointers.
    /// This method doesn't work for standalone function pointers.
    ///
    /// # Safety
    /// This method is unsafe, because
    /// - nothing guarantees that the `T` type is appropriate for the data referenced by the capsule
    ///   pointer
    /// - the returned lifetime doesn't guarantee either to cover the actual lifetime of the data
    ///   (although capsule data is usually static)
    pub unsafe fn import_data<'a, T>(py: Python, name: &CStr) -> PyResult<&'a T> {
        Ok(&*(Self::import(py, name)? as *const T))
    }

    /// Retrieves the contents of a capsule as a void pointer by its name.
    ///
    /// This is suitable in particular for later conversion as a function pointer
    /// with `mem::transmute`, for architectures where data and function pointers have
    /// the same size (see details about this in the
    /// [documentation](https://doc.rust-lang.org/std/mem/fn.transmute.html#examples)
    /// of the Rust standard library).
    pub fn import(py: Python, name: &CStr) -> PyResult<*const c_void> {
        let caps_ptr = unsafe { PyCapsule_Import(name.as_ptr(), 0) };
        if caps_ptr.is_null() {
            return Err(PyErr::fetch(py));
        }
        Ok(caps_ptr)
    }

    /// Convenience method to create a capsule for some data
    ///
    /// The encapsuled data may be an array of functions, but it can't be itself a
    /// function directly.
    ///
    /// May panic when running out of memory.
    ///
    pub fn new_data<T, N>(py: Python, data: &'static T, name: N) -> Result<Self, NulError>
    where
        N: Into<Vec<u8>>,
    {
        Self::new(py, data as *const T as *const c_void, name)
    }

    /// Creates a new capsule from a raw void pointer
    ///
    /// This is suitable in particular to store a function pointer in a capsule. These
    /// can be obtained simply by a simple cast:
    ///
    /// ```
    /// use libc::c_void;
    ///
    /// extern "C" fn inc(a: i32) -> i32 {
    ///     a + 1
    /// }
    ///
    /// fn main() {
    ///     let ptr = inc as *const c_void;
    /// }
    /// ```
    ///
    /// # Errors
    /// This method returns `NulError` if `name` contains a 0 byte (see also `CString::new`)
    pub fn new<N>(py: Python, pointer: *const c_void, name: N) -> Result<Self, NulError>
    where
        N: Into<Vec<u8>>,
    {
        let name = CString::new(name)?;
        let caps = unsafe {
            Ok(err::cast_from_owned_ptr_or_panic(
                py,
                PyCapsule_New(pointer as *mut c_void, name.as_ptr(), None),
            ))
        };
        // it is required that the capsule name outlives the call as a char*
        // TODO implement a proper PyCapsule_Destructor to release it properly
        mem::forget(name);
        caps
    }

    /// Returns a reference to the capsule data.
    ///
    /// The name must match exactly the one given at capsule creation time (see `new_data`) and
    /// is converted to a C string under the hood. If that's too much overhead, consider using
    /// `data_ref_cstr()` or caching strategies.
    ///
    /// This is unsafe, because
    /// - nothing guarantees that the `T` type is appropriate for the data referenced by the capsule
    ///   pointer
    /// - the returned lifetime doesn't guarantee either to cover the actual lifetime of the data
    ///   (although capsule data is usually static)
    ///
    /// # Errors
    /// This method returns `NulError` if `name` contains a 0 byte (see also `CString::new`)
    pub unsafe fn data_ref<'a, T, N>(&self, name: N) -> Result<&'a T, NulError>
    where
        N: Into<Vec<u8>>,
    {
        Ok(self.data_ref_cstr(&CString::new(name)?))
    }

    /// Returns a reference to the capsule data.
    ///
    /// This is identical to `data_ref`, except for the name passing. This allows to use
    /// lower level constructs without overhead, such as `CStr::from_bytes_with_nul_unchecked`
    /// or the `cstr!` macro of `rust-cpython`
    pub unsafe fn data_ref_cstr<'a, T>(&self, name: &CStr) -> &'a T {
        &*(PyCapsule_GetPointer(self.as_ptr(), name.as_ptr()) as *const T)
    }
}