1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// Copyright (c) 2015 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use std::ffi::{CStr, CString};
use std::panic;
use std::{any, io, marker, mem, ptr};
use crate::conversion::ToPyObject;
use crate::err::{self, PyResult};
use crate::ffi;
use crate::objects::{exc, PyDict, PyObject, PyString, PyTuple};
use crate::python::{PyDrop, Python, PythonObject};
#[macro_export]
#[doc(hidden)]
macro_rules! py_method_def {
($name: expr, $flags: expr, $wrap: expr) => {{
$crate::py_method_def!($name, $flags, $wrap, "")
}};
($name: expr, $flags: expr, $wrap: expr, $doc: expr) => {{
static mut METHOD_DEF: $crate::_detail::ffi::PyMethodDef =
$crate::_detail::ffi::PyMethodDef {
//ml_name: bytes!(stringify!($name), "\0"),
ml_name: 0 as *const $crate::_detail::libc::c_char,
ml_meth: None,
ml_flags: $crate::_detail::ffi::METH_VARARGS
| $crate::_detail::ffi::METH_KEYWORDS
| $flags,
ml_doc: 0 as *const $crate::_detail::libc::c_char,
};
METHOD_DEF.ml_name = $crate::strip_raw!(concat!($name, "\0")).as_ptr() as *const _;
if !$doc.is_empty() {
METHOD_DEF.ml_doc = concat!($doc, "\0").as_ptr() as *const _;
}
METHOD_DEF.ml_meth = Some(std::mem::transmute::<
$crate::_detail::ffi::PyCFunctionWithKeywords,
$crate::_detail::ffi::PyCFunction,
>($wrap));
&mut METHOD_DEF
}};
}
/// Creates a Python callable object that invokes a Rust function.
///
/// There are two forms of this macro:
///
/// 1. `py_fn!(py, f(parameter_list))`
/// 2. `py_fn!(py, f(parameter_list) -> PyResult<T> { body })`
///
/// both forms return a value of type `PyObject`.
/// This python object is a callable object that invokes
/// the Rust function when called.
///
/// When called, the arguments are converted into
/// the Rust types specified in the parameter list.
/// See `py_argparse!()` for details on argument parsing.
///
/// Form 1:
///
/// * `py` must be an expression of type `Python`
/// * `f` must be the name of a function that is compatible with the specified
/// parameter list, except that a single parameter of type `Python` is prepended.
/// The function must return `PyResult<T>` for some `T` that implements `ToPyObject`.
///
/// Form 2:
///
/// * `py` must be an identifier that refers to a `Python` value.
/// The function body will also have access to a `Python` variable of this name.
/// * `f` must be an identifier.
/// * The function return type must be `PyResult<T>` for some `T` that
/// implements `ToPyObject`.
///
/// # Errors
///
/// * If argument parsing fails, the Rust function will not be called and an
/// appropriate Python exception is raised instead (usually `TypeError`
/// when the Python value does not match the expected type;
/// the implementation of `FromPyObject` for your type may document additional
/// errors).
/// * If the Rust function panics, a Python `SystemError` will be raised.
///
/// # Example
/// ```
/// use cpython::{Python, PyResult, PyErr, PyDict, py_fn};
/// use cpython::{exc};
///
/// fn multiply(py: Python, lhs: i32, rhs: i32) -> PyResult<i32> {
/// match lhs.checked_mul(rhs) {
/// Some(val) => Ok(val),
/// None => Err(PyErr::new_lazy_init(py.get_type::<exc::OverflowError>(), None))
/// }
/// }
///
/// fn main() {
/// let gil = Python::acquire_gil();
/// let py = gil.python();
/// let dict = PyDict::new(py);
/// dict.set_item(py, "multiply", py_fn!(py, multiply(lhs: i32, rhs: i32))).unwrap();
/// py.run("print(multiply(6, 7))", None, Some(&dict)).unwrap();
/// }
/// ```
#[macro_export]
macro_rules! py_fn {
($py:expr, $f:ident $plist:tt ) => {
$crate::py_argparse_parse_plist! { py_fn_impl { $py, $f } $plist }
};
($py:ident, $f:ident $plist:tt -> $ret:ty { $($body:tt)* } ) => {
$crate::py_argparse_parse_plist! { py_fn_impl { $py, $f, $ret, { $($body)* } } $plist }
};
}
#[macro_export]
#[doc(hidden)]
macro_rules! py_fn_impl {
// Form 1: reference existing function
{ $py:expr, $f:ident [ $( { $pname:ident : $ptype:ty = $detail:tt } )* ] } => {{
unsafe extern "C" fn wrap(
_slf: *mut $crate::_detail::ffi::PyObject,
args: *mut $crate::_detail::ffi::PyObject,
kwargs: *mut $crate::_detail::ffi::PyObject)
-> *mut $crate::_detail::ffi::PyObject
{
$crate::_detail::handle_callback(
stringify!($f), $crate::_detail::PyObjectCallbackConverter,
|py| {
$crate::py_argparse_raw!(py, Some(stringify!($f)), args, kwargs,
[ $( { $pname : $ptype = $detail } )* ]
{
$f(py $(, $pname )* )
})
})
}
unsafe {
$crate::_detail::py_fn_impl($py,
$crate::py_method_def!(stringify!($f), 0, wrap))
}
}};
// Form 2: inline function definition
{ $py:ident, $f:ident, $ret:ty, {$($body:tt)*} [ $( { $pname:ident : $ptype:ty = $detail:tt } )* ] } => {{
fn $f($py: $crate::Python $( , $pname : $ptype )* ) -> $ret {
let _ = $py;
$($body)*
}
$crate::py_fn_impl!($py, $f [ $( { $pname : $ptype = $detail } )* ])
}}
}
pub unsafe fn py_fn_impl(py: Python, method_def: *mut ffi::PyMethodDef) -> PyObject {
err::from_owned_ptr_or_panic(py, ffi::PyCFunction_New(method_def, ptr::null_mut()))
}
pub trait CallbackConverter<S> {
type R;
fn convert(val: S, py: Python) -> Self::R;
fn error_value() -> Self::R;
}
pub struct PyObjectCallbackConverter;
impl<S> CallbackConverter<S> for PyObjectCallbackConverter
where
S: ToPyObject,
{
type R = *mut ffi::PyObject;
fn convert(val: S, py: Python) -> *mut ffi::PyObject {
val.into_py_object(py).into_object().steal_ptr()
}
#[inline]
fn error_value() -> *mut ffi::PyObject {
ptr::null_mut()
}
}
pub struct PythonObjectCallbackConverter<T>(pub marker::PhantomData<T>);
impl<T, S> CallbackConverter<S> for PythonObjectCallbackConverter<T>
where
T: PythonObject,
S: ToPyObject<ObjectType = T>,
{
type R = *mut ffi::PyObject;
fn convert(val: S, py: Python) -> *mut ffi::PyObject {
val.into_py_object(py).into_object().steal_ptr()
}
#[inline]
fn error_value() -> *mut ffi::PyObject {
ptr::null_mut()
}
}
pub unsafe fn handle_callback<F, T, C>(_location: &str, _c: C, f: F) -> C::R
where
F: FnOnce(Python) -> PyResult<T>,
F: panic::UnwindSafe,
C: CallbackConverter<T>,
{
let ret = panic::catch_unwind(|| {
let py = Python::assume_gil_acquired();
match f(py) {
Ok(val) => C::convert(val, py),
Err(e) => {
e.restore(py);
C::error_value()
}
}
});
match ret {
Ok(r) => r,
Err(err) => {
// Protect against panics in C::error_value() causing UB
let guard = AbortOnDrop("handle_panic() / C::error_value()");
handle_panic(Python::assume_gil_acquired(), err);
let errval = C::error_value();
mem::forget(guard);
errval
}
}
}
// This only needs `&dyn Any`, but we keep a `Box` all the way to avoid the
// risk of a subtle bug in the caller where `&Box<dyn Any>` is coerced to
// `&dyn Any` by unsizing with another layer of vtable and wide pointer,
// instead of the expected auto-deref.
fn handle_panic(_py: Python, panic: Box<dyn any::Any>) {
let panic_str = if let Some(s) = panic.downcast_ref::<String>() {
Some(s.as_str())
} else if let Some(s) = panic.downcast_ref::<&'static str>() {
Some(*s)
} else {
None
};
let panic_cstring = panic_str.and_then(|s| {
let result = CString::new(format!("Rust panic: {}", s));
// Give up on representing the panic payload if it contains a null byte
// TODO: use PyErr_SetObject instead, so a `char*` string isn’t needed?
result.ok()
});
let msg = if let Some(s) = &panic_cstring {
s.as_c_str()
} else {
cstr!("Rust panic")
};
unsafe {
ffi::PyErr_SetString(ffi::PyExc_SystemError, msg.as_ptr());
}
}
pub struct AbortOnDrop<'a>(pub &'a str);
impl<'a> Drop for AbortOnDrop<'a> {
fn drop(&mut self) {
use std::io::Write;
let _ = writeln!(&mut io::stderr(), "Cannot unwind out of {}", self.0);
unsafe { libc::abort() }
}
}
// Tests for this file are in tests/test_function.rs