1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// Copyright (c) 2015 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use crate::err::PyResult;
use crate::ffi;
use crate::objects::PyObject;
use crate::python::{PyClone, PyDrop, Python, PythonObject, PythonObjectWithCheckedDowncast};
/// Conversion trait that allows various objects to be converted into Python objects.
///
/// Note: The associated type `ObjectType` is used so that some Rust types
/// convert to a more precise type of Python object.
/// For example, `[T]::to_py_object()` will result in a `PyList`.
/// You can always calls `val.to_py_object(py).into_py_object()` in order to obtain `PyObject`
/// (the second into_py_object() call via the PythonObject trait corresponds to the upcast from `PyList` to `PyObject`).
pub trait ToPyObject {
type ObjectType: PythonObject;
/// Converts self into a Python object.
fn to_py_object(&self, py: Python) -> Self::ObjectType;
/// Converts self into a Python object.
///
/// May be more efficient than `to_py_object` in some cases because
/// it can move out of the input object.
#[inline]
fn into_py_object(self, py: Python) -> Self::ObjectType
where
Self: Sized,
{
self.to_py_object(py)
}
/// Converts self into a Python object and calls the specified closure
/// on the native FFI pointer underlying the Python object.
///
/// May be more efficient than `to_py_object` because it does not need
/// to touch any reference counts when the input object already is a Python object.
#[inline]
fn with_borrowed_ptr<F, R>(&self, py: Python, f: F) -> R
where
F: FnOnce(*mut ffi::PyObject) -> R,
{
let obj = self.to_py_object(py).into_object();
let res = f(obj.as_ptr());
obj.release_ref(py);
res
}
// FFI functions that accept a borrowed reference will use:
// input.with_borrowed_ptr(|obj| ffi::Call(obj)
// 1) input is &PyObject
// -> with_borrowed_ptr() just forwards to the closure
// 2) input is PyObject
// -> with_borrowed_ptr() just forwards to the closure
// 3) input is &str, int, ...
// -> to_py_object() allocates new Python object; FFI call happens; release_ref() calls Py_DECREF()
// FFI functions that steal a reference will use:
// let input = input.into_py_object()?; ffi::Call(input.steal_ptr())
// 1) input is &PyObject
// -> into_py_object() calls Py_INCREF
// 2) input is PyObject
// -> into_py_object() is no-op
// 3) input is &str, int, ...
// -> into_py_object() allocates new Python object
}
py_impl_to_py_object_for_python_object!(PyObject);
/// FromPyObject is implemented by various types that can be extracted from a Python object.
///
/// Normal usage is through the `PyObject::extract` helper method:
/// ```let obj: PyObject = ...;
/// let value = obj.extract::<TargetType>(py)?;
/// ```
///
/// Each target type for this conversion supports a different Python objects as input.
/// Calls with an unsupported input object will result in an exception (usually a `TypeError`).
///
/// This trait is also used by the `py_fn!` and `py_class!` and `py_argparse!` macros
/// in order to translate from Python objects to the expected Rust parameter types.
/// For example, the parameter `x` in `def method(self, x: i32)` will use
/// `impl FromPyObject for i32` to convert the input Python object into a Rust `i32`.
/// When these macros are used with reference parameters (`x: &str`), the trait
/// `RefFromPyObject` is used instead.
pub trait FromPyObject<'s>: Sized {
/// Extracts `Self` from the source `PyObject`.
fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self>;
}
py_impl_from_py_object_for_python_object!(PyObject);
/// RefFromPyObject is implemented by various types that can be extracted
/// as a reference from a Python object.
/// Depending on the input object, the reference may point into memory owned
/// by the Python interpreter; or into a temporary object.
///
/// ```let obj: PyObject = ...;
/// let sum_of_bytes = <[u8] as RefFromPyObject>::with_extracted(py, obj,
/// |data: &[u8]| data.iter().sum()
/// );
/// ```
/// A lambda has to be used because the slice may refer to temporary object
/// that exists only during the `with_extracted` call.
///
/// Each target type for this conversion supports a different Python objects as input.
/// Calls with an unsupported input object will result in an exception (usually a `TypeError`).
///
/// This trait is also used by the `py_fn!` and `py_class!` and `py_argparse!` macros
/// in order to translate from Python objects to the expected Rust parameter types.
/// For example, the parameter `x` in `def method(self, x: &[u8])` will use
/// `impl RefFromPyObject for [u8]` to convert the input Python object into a Rust `&[u8]`.
/// When these macros are used with non-reference parameters (`x: i32`), the trait
/// `FromPyObject` is used instead.
pub trait RefFromPyObject {
fn with_extracted<F, R>(py: Python, obj: &PyObject, f: F) -> PyResult<R>
where
F: FnOnce(&Self) -> R;
}
impl<T: ?Sized> RefFromPyObject for T
where
for<'a> &'a T: FromPyObject<'a>,
{
#[inline]
fn with_extracted<F, R>(py: Python, obj: &PyObject, f: F) -> PyResult<R>
where
F: FnOnce(&Self) -> R,
{
match FromPyObject::extract(py, obj) {
Ok(val) => Ok(f(val)),
Err(e) => Err(e),
}
}
}
/*
impl <'prepared, T> ExtractPyObject<'prepared> for T
where T: PythonObjectWithCheckedDowncast
{
type Prepared = PyObject;
#[inline]
fn prepare_extract(py: Python, obj: &PyObject) -> PyResult<Self::Prepared> {
Ok(obj.clone_ref(py))
}
#[inline]
fn extract(py: Python, obj: &'prepared Self::Prepared) -> PyResult<T> {
Ok(obj.clone_ref(py).cast_into(py)?)
}
}
*/
/// `ToPyObject` for references: calls to_py_object() on the underlying `T`.
impl<'a, T: ?Sized> ToPyObject for &'a T
where
T: ToPyObject,
{
type ObjectType = T::ObjectType;
#[inline]
fn to_py_object(&self, py: Python) -> T::ObjectType {
<T as ToPyObject>::to_py_object(*self, py)
}
#[inline]
fn into_py_object(self, py: Python) -> T::ObjectType {
<T as ToPyObject>::to_py_object(self, py)
}
#[inline]
fn with_borrowed_ptr<F, R>(&self, py: Python, f: F) -> R
where
F: FnOnce(*mut ffi::PyObject) -> R,
{
<T as ToPyObject>::with_borrowed_ptr(*self, py, f)
}
}
/// `Option::Some<T>` is converted like `T`.
/// `Option::None` is converted to Python `None`.
impl<T> ToPyObject for Option<T>
where
T: ToPyObject,
{
type ObjectType = PyObject;
fn to_py_object(&self, py: Python) -> PyObject {
match *self {
Some(ref val) => val.to_py_object(py).into_object(),
None => py.None(),
}
}
fn into_py_object(self, py: Python) -> PyObject {
match self {
Some(val) => val.into_py_object(py).into_object(),
None => py.None(),
}
}
}
/// If the python value is None, returns `Option::None`.
/// Otherwise, converts the python value to `T` and returns `Some(T)`.
impl<'s, T> FromPyObject<'s> for Option<T>
where
T: FromPyObject<'s>,
{
fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self> {
if obj.is_none(py) {
Ok(None)
} else {
match T::extract(py, obj) {
Ok(v) => Ok(Some(v)),
Err(e) => Err(e),
}
}
}
}
/*
impl <'prepared, T> ExtractPyObject<'prepared> for Option<T>
where T: ExtractPyObject<'prepared>
{
type Prepared = Option<T::Prepared>;
fn prepare_extract(py: Python, obj: &PyObject) -> PyResult<Self::Prepared> {
if obj.is_none(py) {
Ok(None)
} else {
Ok(Some(T::prepare_extract(py, obj)?))
}
}
fn extract(py: Python, obj: &'prepared Self::Prepared) -> PyResult<Option<T>> {
match *obj {
Some(ref inner) => {
match T::extract(py, inner) {
Ok(v) => Ok(Some(v)),
Err(e) => Err(e)
}
},
None => Ok(None)
}
}
}
*/