1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// Copyright (c) 2015 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

use crate::err::PyResult;
use crate::ffi;
use crate::objects::PyObject;
use crate::python::{PyClone, PyDrop, Python, PythonObject, PythonObjectWithCheckedDowncast};

/// Conversion trait that allows various objects to be converted into Python objects.
///
/// Note: The associated type `ObjectType` is used so that some Rust types
/// convert to a more precise type of Python object.
/// For example, `[T]::to_py_object()` will result in a `PyList`.
/// You can always calls `val.to_py_object(py).into_py_object()` in order to obtain `PyObject`
/// (the second into_py_object() call via the PythonObject trait corresponds to the upcast from `PyList` to `PyObject`).
pub trait ToPyObject {
    type ObjectType: PythonObject;

    /// Converts self into a Python object.
    fn to_py_object(&self, py: Python) -> Self::ObjectType;

    /// Converts self into a Python object.
    ///
    /// May be more efficient than `to_py_object` in some cases because
    /// it can move out of the input object.
    #[inline]
    fn into_py_object(self, py: Python) -> Self::ObjectType
    where
        Self: Sized,
    {
        self.to_py_object(py)
    }

    /// Converts self into a Python object and calls the specified closure
    /// on the native FFI pointer underlying the Python object.
    ///
    /// May be more efficient than `to_py_object` because it does not need
    /// to touch any reference counts when the input object already is a Python object.
    #[inline]
    fn with_borrowed_ptr<F, R>(&self, py: Python, f: F) -> R
    where
        F: FnOnce(*mut ffi::PyObject) -> R,
    {
        let obj = self.to_py_object(py).into_object();
        let res = f(obj.as_ptr());
        obj.release_ref(py);
        res
    }

    // FFI functions that accept a borrowed reference will use:
    //   input.with_borrowed_ptr(|obj| ffi::Call(obj)
    // 1) input is &PyObject
    //   -> with_borrowed_ptr() just forwards to the closure
    // 2) input is PyObject
    //   -> with_borrowed_ptr() just forwards to the closure
    // 3) input is &str, int, ...
    //   -> to_py_object() allocates new Python object; FFI call happens; release_ref() calls Py_DECREF()

    // FFI functions that steal a reference will use:
    //   let input = input.into_py_object()?; ffi::Call(input.steal_ptr())
    // 1) input is &PyObject
    //   -> into_py_object() calls Py_INCREF
    // 2) input is PyObject
    //   -> into_py_object() is no-op
    // 3) input is &str, int, ...
    //   -> into_py_object() allocates new Python object
}

py_impl_to_py_object_for_python_object!(PyObject);

/// FromPyObject is implemented by various types that can be extracted from a Python object.
///
/// Normal usage is through the `PyObject::extract` helper method:
/// ```let obj: PyObject = ...;
/// let value = obj.extract::<TargetType>(py)?;
/// ```
///
/// Each target type for this conversion supports a different Python objects as input.
/// Calls with an unsupported input object will result in an exception (usually a `TypeError`).
///
/// This trait is also used by the `py_fn!` and `py_class!` and `py_argparse!` macros
/// in order to translate from Python objects to the expected Rust parameter types.
/// For example, the parameter `x` in `def method(self, x: i32)` will use
/// `impl FromPyObject for i32` to convert the input Python object into a Rust `i32`.
/// When these macros are used with reference parameters (`x: &str`), the trait
/// `RefFromPyObject` is used instead.
pub trait FromPyObject<'s>: Sized {
    /// Extracts `Self` from the source `PyObject`.
    fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self>;
}

py_impl_from_py_object_for_python_object!(PyObject);

/// RefFromPyObject is implemented by various types that can be extracted
/// as a reference from a Python object.
/// Depending on the input object, the reference may point into memory owned
/// by the Python interpreter; or into a temporary object.
///
/// ```let obj: PyObject = ...;
/// let sum_of_bytes = <[u8] as RefFromPyObject>::with_extracted(py, obj,
///     |data: &[u8]| data.iter().sum()
/// );
/// ```
/// A lambda has to be used because the slice may refer to temporary object
/// that exists only during the `with_extracted` call.
///
/// Each target type for this conversion supports a different Python objects as input.
/// Calls with an unsupported input object will result in an exception (usually a `TypeError`).
///
/// This trait is also used by the `py_fn!` and `py_class!` and `py_argparse!` macros
/// in order to translate from Python objects to the expected Rust parameter types.
/// For example, the parameter `x` in `def method(self, x: &[u8])` will use
/// `impl RefFromPyObject for [u8]` to convert the input Python object into a Rust `&[u8]`.
/// When these macros are used with non-reference parameters (`x: i32`), the trait
/// `FromPyObject` is used instead.
pub trait RefFromPyObject {
    fn with_extracted<F, R>(py: Python, obj: &PyObject, f: F) -> PyResult<R>
    where
        F: FnOnce(&Self) -> R;
}

impl<T: ?Sized> RefFromPyObject for T
where
    for<'a> &'a T: FromPyObject<'a>,
{
    #[inline]
    fn with_extracted<F, R>(py: Python, obj: &PyObject, f: F) -> PyResult<R>
    where
        F: FnOnce(&Self) -> R,
    {
        match FromPyObject::extract(py, obj) {
            Ok(val) => Ok(f(val)),
            Err(e) => Err(e),
        }
    }
}

/*
impl <'prepared, T> ExtractPyObject<'prepared> for T
where T: PythonObjectWithCheckedDowncast
{
    type Prepared = PyObject;

    #[inline]
    fn prepare_extract(py: Python, obj: &PyObject) -> PyResult<Self::Prepared> {
        Ok(obj.clone_ref(py))
    }

    #[inline]
    fn extract(py: Python, obj: &'prepared Self::Prepared) -> PyResult<T> {
        Ok(obj.clone_ref(py).cast_into(py)?)
    }
}
*/

/// `ToPyObject` for references: calls to_py_object() on the underlying `T`.
impl<'a, T: ?Sized> ToPyObject for &'a T
where
    T: ToPyObject,
{
    type ObjectType = T::ObjectType;

    #[inline]
    fn to_py_object(&self, py: Python) -> T::ObjectType {
        <T as ToPyObject>::to_py_object(*self, py)
    }

    #[inline]
    fn into_py_object(self, py: Python) -> T::ObjectType {
        <T as ToPyObject>::to_py_object(self, py)
    }

    #[inline]
    fn with_borrowed_ptr<F, R>(&self, py: Python, f: F) -> R
    where
        F: FnOnce(*mut ffi::PyObject) -> R,
    {
        <T as ToPyObject>::with_borrowed_ptr(*self, py, f)
    }
}

/// `Option::Some<T>` is converted like `T`.
/// `Option::None` is converted to Python `None`.
impl<T> ToPyObject for Option<T>
where
    T: ToPyObject,
{
    type ObjectType = PyObject;

    fn to_py_object(&self, py: Python) -> PyObject {
        match *self {
            Some(ref val) => val.to_py_object(py).into_object(),
            None => py.None(),
        }
    }

    fn into_py_object(self, py: Python) -> PyObject {
        match self {
            Some(val) => val.into_py_object(py).into_object(),
            None => py.None(),
        }
    }
}

/// If the python value is None, returns `Option::None`.
/// Otherwise, converts the python value to `T` and returns `Some(T)`.
impl<'s, T> FromPyObject<'s> for Option<T>
where
    T: FromPyObject<'s>,
{
    fn extract(py: Python, obj: &'s PyObject) -> PyResult<Self> {
        if obj.is_none(py) {
            Ok(None)
        } else {
            match T::extract(py, obj) {
                Ok(v) => Ok(Some(v)),
                Err(e) => Err(e),
            }
        }
    }
}

/*
impl <'prepared, T> ExtractPyObject<'prepared> for Option<T>
where T: ExtractPyObject<'prepared>
{
    type Prepared = Option<T::Prepared>;

    fn prepare_extract(py: Python, obj: &PyObject) -> PyResult<Self::Prepared> {
        if obj.is_none(py) {
            Ok(None)
        } else {
            Ok(Some(T::prepare_extract(py, obj)?))
        }
    }

    fn extract(py: Python, obj: &'prepared Self::Prepared) -> PyResult<Option<T>> {
        match *obj {
            Some(ref inner) => {
                match T::extract(py, inner) {
                    Ok(v) => Ok(Some(v)),
                    Err(e) => Err(e)
                }
            },
            None => Ok(None)
        }
    }
}
*/